HOME

TheInfoList



OR:

The Bolshoi simulation, a
computer model Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be deter ...
of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
run in 2010 on the Pleiades supercomputer at the
NASA Ames Research Center The Ames Research Center (ARC), also known as NASA Ames, is a major NASA research center at Moffett Federal Airfield in California's Silicon Valley. It was founded in 1939 as the second National Advisory Committee for Aeronautics (NACA) labora ...
, was the most accurate cosmological simulation to that date of the evolution of the
large-scale structure of the universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
. The Bolshoi simulation used the now-standard
ΛCDM The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda ( Greek Λ) associated w ...
(Lambda-CDM) model of the universe and the
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
five-year and seven-year cosmological parameters from
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
's Wilkinson Microwave Anisotropy Probe team. "The principal purpose of the Bolshoi simulation is to compute and model the evolution of dark matter halos, thereby rendering the invisible visible for astronomers to study, and to predict visible structure that astronomers can seek to observe." “Bolshoi” is a
Russian Russian(s) refers to anything related to Russia, including: *Russians (, ''russkiye''), an ethnic group of the East Slavic peoples, primarily living in Russia and neighboring countries *Rossiyane (), Russian language term for all citizens and peo ...
word meaning “big.” The first two of a series of research papers describing Bolshoi and its implications were published in 2011 in the
Astrophysical Journal ''The Astrophysical Journal'', often abbreviated ''ApJ'' (pronounced "ap jay") in references and speech, is a peer-reviewed scientific journal of astrophysics and astronomy, established in 1895 by American astronomers George Ellery Hale and ...
. The first data release of Bolshoi outputs has been made publicly available to the world's astronomers and astrophysicists. The data include output from the Bolshoi simulation and from the BigBolshoi, or MultiDark, simulation of a volume 64 times that of Bolshoi. The Bolshoi-Planck simulation, with the same resolution as Bolshoi, was run in 2013 on the Pleiades supercomputer using the Planck satellite team's cosmological parameters released in March 2013. The Bolshoi-Planck simulation is currently being analyzed in preparation for publication and distribution of its results in 2014. Bolshoi simulations continue to be developed as of 2018.


Contributors

Joel R. Primack's team at the
University of California, Santa Cruz The University of California, Santa Cruz (UC Santa Cruz or UCSC) is a public land-grant research university in Santa Cruz, California. It is one of the ten campuses in the University of California system. Located on Monterey Bay, on the edge of ...
, partnered with Anatoly Klypin's group at
New Mexico State University New Mexico State University (NMSU or NM State) is a public land-grant research university based primarily in Las Cruces, New Mexico. Founded in 1888, it is the oldest public institution of higher education in New Mexico and one of the state's ...
, in Las Cruces to run and analyze the Bolshoi simulations. Further analysis and comparison with observations by Risa Wechsler's group at Stanford and others are reflected in the papers based on the Bolshoi simulations.


Rationale

A successful large-scale simulation of the evolution of galaxies, with results consistent with what is actually seen by astronomers in the night sky, provides evidence that the theoretical underpinnings of the models employed, i.e., the supercomputer implementations ΛCDM, are sound bases for understanding galactic dynamics and the history of the universe, and opens avenues to further research. The Bolshoi Simulation isn't the first large-scale simulation of the universe, but it is the first to rival the extraordinary precision of modern astrophysical observations. The previous largest and most successful simulation of galactic evolution was the Millennium Simulation Project, led by Volker Springel. Although the success of that project stimulated more than 400 research papers, the Millennium simulations used early WMAP cosmological parameters that have since become obsolete. As a result, they led to some predictions, for example about the distribution of galaxies, that do not match very well with observations. The Bolshoi simulations use the latest cosmological parameters, are higher in resolution, and have been analyzed in greater detail.


Methods

The Bolshoi simulation follows the evolving distribution of a statistical ensemble of 8.6 billion particles of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
, each of which represents about 200 million solar masses, in a cube of 3-dimensional space about 1 billion light years on edge. Dark matter and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
dominate the evolution of the cosmos in this model. The dynamics are modeled with the ΛCDM theory and
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
, with the model including cold dark matter (CDM) and the Λ
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
term simulating the
cosmic acceleration Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered duri ...
referred to as dark energy. The first 100 million years ( Myr) or so of the evolution of the universe after the Big Bang can be derived analytically. The Bolshoi simulation was started at redshift z=80, corresponding to about 20 Myr after the Big Bang. Initial parameters were calculated with linear theory as implemented by the CAMB tools, part of the WMAP website. The tools provide the initial conditions, including a statistical distribution of positions and velocities of the particles in the ensemble, for the much more demanding Bolshoi simulation of the next approximately 13.8 billion years. The experimental volume thus represents a random region of the universe, so comparisons with observations must be statistical. The Bolshoi simulation employs a version of an
adaptive mesh refinement In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions ...
(AMR) algorithm called an adaptive refinement tree (ART), in which a cube in space with more than a predefined density of matter is recursively divided into a mesh of smaller cubes. The subdivision continues to a limiting level, chosen to avoid using too much supercomputer time. Neighboring cubes are not permitted to vary by too many levels, in the case of Bolshoi by more than one level of subdivision, to avoid large discontinuities. The AMR/ART method is well suited to model the increasingly inhomogeneous distribution of matter that evolves as the simulation proceeds. “Once constructed, the mesh, rather than being destroyed at each time step, is promptly adjusted to the evolving particle distribution.” As the Bolshoi simulation ran, the position and velocity of each of the 8.6 billion particles representing dark matter was recorded in 180 snapshots roughly evenly spaced over the simulated 13.8-billion-year run on the Pleiades supercomputer. Each snapshot was then analyzed to find all the dark matter halos and the properties of each (particle membership, location, density distribution, rotation, shape, etc.). All this data was then used to determine the entire growth and merging history of every halo. These results are used in turn to predict where galaxies will form and how they will evolve. How well these predictions correspond to observations provides a measure of the success of the simulation. Other checks were also made.


Results

The Bolshoi simulation is considered to have produced the best approximation to reality so far obtained for so large a volume of space, about 1 billion light years across. “Bolshoi produces a model universe that bears a striking and uncanny resemblance to the real thing. Starting with initial conditions based on the known distribution of matter shortly after the Big Bang, and using Einstein’s general theory of relativity as the ‘rules’ of the simulation, Bolshoi predicts a modern-day universe with galaxies lining up into hundred-million-light-year-long filaments that surround immense voids, forming a cosmic foam-like structure that precisely matches the
cosmic web The observable universe is a Ball (mathematics), ball-shaped region of the universe comprising all matter that can be observation, observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electroma ...
as revealed by deep galaxy studies such as the Sloan Digital Sky Survey. To achieve such a close match, Bolshoi is clearly giving cosmologists a fairly accurate picture of how the universe actually evolved.” The Bolshoi simulation found that the Sheth–Tormen approximation overpredicts the abundance of haloes by a factor of 10 for redshifts z>10.


Support

This research was supported by grants from NASA and NSF to Joel Primack and Anatoly Klypin, including massive grants of supercomputer time on the NASA Advanced Supercomputing (NAS) supercomputer Pleiades at NASA Ames Research Center. Hosting of the Bolshoi outputs and analyses at
Leibniz Institute for Astrophysics Potsdam Leibniz Institute for Astrophysics Potsdam (AIP) is a German research institute. It is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory Potsdam (AOP) founded in 1874. The latter was the world's first o ...
(AIP) is partially supported by the MultiDark grant from the Spanish MICINN Programme.


In popular culture

A visualization from the Bolshoi simulation was narrated in the National Geographic TV special ''Inside the Milky Way''. The Icelandic singer-songwriter Björk used footage from the Bolshoi cosmological simulation in the performance of her musical number “Dark Matter” in her Biophilia concert.


References


References for figure

*Mantz, A., Allen, S. W., Ebeling, H., & Rapetti, D. 2008
MNRAS3871179
*Henry, J. P., Evrard, A. E., Hoekstra, H., Babul, A., & Mahdavi, A. 2009
ApJ6911307
*Vikhlinin, A., Kravtsov, A. V., Burenin, R. A., et al. 2009
ApJ6921060
*Rozo, E., Rykoff, E. S., Evrard, A., et al. 2009
ApJ699768


External links

*
A. Klypin’s (NMSU) Bolshoi Cosmological Simulation Website


{{Portal bar, Physics Physical cosmology Cosmological simulation