HOME

TheInfoList



OR:

In
mathematical finance Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets. In general, there exist two separate branches of finance that require ...
, the Black–Scholes equation is a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to h ...
(PDE) governing the price evolution of a
European call In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options� ...
or European put under the
Black–Scholes model The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the parabolic partial differential equation in the model, known as the Black� ...
. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of
options Option or Options may refer to: Computing *Option key, a key on Apple computer keyboards *Option type, a polymorphic data type in programming languages *Command-line option, an optional parameter to a command *OPTIONS, an HTTP request method ...
, or more generally, derivatives. For a European call or put on an underlying stock paying no dividends, the equation is: :\frac + \frac\sigma^2 S^2 \frac + rS\frac - rV = 0 where ''V'' is the price of the option as a function of stock price ''S'' and time ''t'', ''r'' is the risk-free interest rate, and \sigma is the volatility of the stock. The key financial insight behind the equation is that, under the model assumption of a
frictionless market Frictionless can refer to: * Frictionless market * Frictionless continuant * Frictionless sharing * Frictionless plane The frictionless plane is a concept from the writings of Galileo Galilei. In his 1638 '' The Two New Sciences'', Galileo prese ...
, one can perfectly
hedge A hedge or hedgerow is a line of closely spaced shrubs and sometimes trees, planted and trained to form a barrier or to mark the boundary of an area, such as between neighbouring properties. Hedges that are used to separate a road from adjoi ...
the option by buying and selling the
underlying In finance, a derivative is a contract that ''derives'' its value from the performance of an underlying entity. This underlying entity can be an asset, index, or interest rate, and is often simply called the "underlying". Derivatives can be use ...
asset in just the right way and consequently “eliminate risk". This hedge, in turn, implies that there is only one right price for the option, as returned by the Black–Scholes formula.


Financial interpretation of the Black–Scholes PDE

The equation has a concrete interpretation that is often used by practitioners and is the basis for the common derivation given in the next subsection. The equation can be rewritten in the form: :\frac + \frac\sigma^2 S^2 \frac = rV - rS\frac The left-hand side consists of a "time decay" term, the change in derivative value with respect to time, called ''theta'', and a term involving the second spatial derivative ''gamma'', the convexity of the derivative value with respect to the underlying value. The right-hand side is the riskless return from a long position in the derivative and a short position consisting of / shares of the underlying. Black and Scholes' insight was that the portfolio represented by the right-hand side is riskless: thus the equation says that the riskless return over any infinitesimal time interval can be expressed as the sum of theta and a term incorporating gamma. For an option, theta is typically negative, reflecting the loss in value due to having less time for exercising the option (for a European call on an underlying without dividends, it is always negative). Gamma is typically positive and so the gamma term reflects the gains in holding the option. The equation states that over any infinitesimal time interval the loss from theta and the gain from the gamma term must offset each other so that the result is a return at the riskless rate. From the viewpoint of the option issuer, e.g. an investment bank, the gamma term is the cost of hedging the option. (Since gamma is the greatest when the spot price of the underlying is near the strike price of the option, the seller's hedging costs are the greatest in that circumstance.)


Derivation of the Black–Scholes PDE

The following derivation is given in Hull's ''Options, Futures, and Other Derivatives''. That, in turn, is based on the classic argument in the original Black–Scholes paper. Per the model assumptions above, the price of the underlying asset (typically a stock) follows a
geometric Brownian motion A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It i ...
. That is :\frac = \mu \,dt + \sigma \,dW\, where ''W'' is a stochastic variable (
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
). Note that ''W'', and consequently its infinitesimal increment ''dW'', represents the only source of uncertainty in the price history of the stock. Intuitively, ''W''(''t'') is a process that "wiggles up and down" in such a random way that its expected change over any time interval is 0. (In addition, its
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
over time ''T'' is equal to ''T''; see ); a good discrete analogue for ''W'' is a simple random walk. Thus the above equation states that the infinitesimal rate of return on the stock has an expected value of ''μ'' ''dt'' and a variance of \sigma^2 dt . The payoff of an option (or any derivative contingent to stock S ) V(S,T) at maturity is known. To find its value at an earlier time we need to know how V evolves as a function of S and t. By
Itô's lemma In mathematics, Itô's lemma or Itô's formula (also called the Itô-Doeblin formula, especially in French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves ...
for two variables we have :dV = \left(\mu S \frac + \frac + \frac\sigma^2 S^2 \frac\right)dt + \sigma S \frac\,dW Now consider a certain portfolio, called the delta-hedge portfolio, consisting of being short one option and long / shares at time t. The value of these holdings is :\Pi = -V + \int\fracdS Over the time period ,t+\Delta t/math>, the total profit or loss from changes in the values of the holdings is (but see note below): :\Delta \Pi = -\Delta V + \frac\,\Delta S Now discretize the equations for ''dS''/''S'' and ''dV'' by replacing differentials with deltas: :\Delta S = \mu S \,\Delta t + \sigma S\,\Delta W\, :\Delta V = \left(\mu S \frac + \frac + \frac\sigma^2 S^2 \frac\right)\Delta t + \sigma S \frac\,\Delta W and appropriately substitute them into the expression for \Delta \Pi: :\Delta \Pi = \left(-\frac - \frac\sigma^2 S^2 \frac\right)\Delta t Notice that the \Delta W term has vanished. Thus uncertainty has been eliminated and the portfolio is effectively riskless. The rate of return on this portfolio must be equal to the rate of return on any other riskless instrument; otherwise, there would be opportunities for arbitrage. Now assuming the risk-free rate of return is r we must have over the time period ,t+\Delta t/math> :r\Pi\,\Delta t = \Delta \Pi If we now equate our two formulas for \Delta\Pi we obtain: :\left(-\frac - \frac\sigma^2 S^2 \frac\right)\Delta t = r\left(-V + S\frac\right)\Delta t Simplifying, we arrive at the celebrated Black–Scholes partial differential equation: :\frac + \frac\sigma^2 S^2 \frac + rS\frac - rV = 0 With the assumptions of the Black–Scholes model, this second order partial differential equation holds for any type of option as long as its price function V is twice differentiable with respect to S and once with respect to t. Different pricing formulae for various options will arise from the choice of payoff function at expiry and appropriate boundary conditions. Technical note: A subtlety obscured by the discretization approach above is that the infinitesimal change in the portfolio value was due to only the infinitesimal changes in the values of the assets being held, not changes in the positions in the assets. In other words, the portfolio was assumed to be ''self-financing''.


Alternative derivation

Here is an alternative derivation that can be utilized in situations where it is initially unclear what the hedging portfolio should be. (For a reference, see 6.4 of Shreve vol II). In the Black–Scholes model, assuming we have picked the risk-neutral probability measure, the underlying stock price ''S''(''t'') is assumed to evolve as a geometric Brownian motion: : \frac = r\ dt + \sigma dW(t) Since this stochastic differential equation (SDE) shows the stock price evolution is Markovian, any derivative on this underlying is a function of time ''t'' and the stock price at the current time, ''S''(''t''). Then an application of Ito's lemma gives an SDE for the discounted derivative process e^V(t, S(t)), which should be a martingale. In order for that to hold, the drift term must be zero, which implies the Black—Scholes PDE. This derivation is basically an application of the
Feynman–Kac formula The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a present ...
and can be attempted whenever the underlying asset(s) evolve according to given SDE(s).


Solving the Black–Scholes PDE

Once the Black–Scholes PDE, with boundary and terminal conditions, is derived for a derivative, the PDE can be solved numerically using standard methods of numerical analysis, such as a type of
finite difference method In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time interval (if applicable) are ...
. In certain cases, it is possible to solve for an exact formula, such as in the case of a European call, which was done by Black and Scholes. To do this for a call option, recall the PDE above has
boundary condition In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to th ...
s :\begin C(0, t) &= 0\textt \\ C(S, t) & \sim S - K e^\textS \rightarrow \infty \\ C(S, T) &= \max\ \end The last condition gives the value of the option at the time that the option matures. Other conditions are possible as ''S'' goes to 0 or infinity. For example, common conditions utilized in other situations are to choose delta to vanish as ''S'' goes to 0 and gamma to vanish as ''S'' goes to infinity; these will give the same formula as the conditions above (in general, differing boundary conditions will give different solutions, so some financial insight should be utilized to pick suitable conditions for the situation at hand). The solution of the PDE gives the value of the option at any earlier time, \mathbb\left max\\right/math>. To solve the PDE we recognize that it is a
Cauchy–Euler equation In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an '' equidimensional'' equation. ...
which can be transformed into a
diffusion equation The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's la ...
by introducing the change-of-variable transformation :\begin \tau &= T - t \\ u &= Ce^ \\ x &= \ln\left(\frac\right) + \left(r - \frac\sigma^2\right)\tau \end Then the Black–Scholes PDE becomes a
diffusion equation The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's la ...
:\frac = \frac\sigma^\frac The terminal condition C(S, T) = \max\ now becomes an initial condition :u(x, 0) = u_0(x) := K(e^ - 1) = K\left(e^-1\right)H(x) , where ''H''(''x'') is the
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argum ...
. The Heaviside function corresponds to enforcement of the boundary data in the ''S'', ''t'' coordinate system that requires when ''t'' = ''T'', :C(S,\,T)=0\quad \forall\;S < K , assuming both ''S'', ''K'' > 0. With this assumption, it is equivalent to the max function over all ''x'' in the real numbers, with the exception of ''x'' = 0. The equality above between the max function and the Heaviside function is in the sense of distributions because it does not hold for ''x'' = 0. Though subtle, this is important because the Heaviside function need not be finite at ''x'' = 0, or even defined for that matter. For more on the value of the Heaviside function at ''x'' = 0, see the section "Zero Argument" in the article
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argum ...
. Using the standard
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
method for solving a
diffusion equation The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's la ...
given an initial value function, ''u''(''x'', 0), we have :u(x, \tau) = \frac\int_^\,dy , which, after some manipulation, yields :u(x, \tau) = Ke^N(d_1) - KN(d_2) , where N(\cdot) is the standard normal
cumulative distribution function In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x. Eve ...
and :\begin d_1 &= \frac \left left(x + \frac \sigma^\tau\right) + \frac \sigma^2 \tau\right\\ d_2 &= \frac \left left(x + \frac \sigma^\tau\right) - \frac \sigma^2 \tau\right. \end These are the same solutions (up to time translation) that were obtained by Fischer Black in 1976.See equation (16) in Reverting u, x, \tau to the original set of variables yields the above stated solution to the Black–Scholes equation. :The asymptotic condition can now be realized. :u(x,\,\tau) \overset Ke^x, which gives simply ''S'' when reverting to the original coordinates. :\lim_ N(x) = 1 .


References

{{DEFAULTSORT:Black-Scholes equation Mathematical finance Financial models