HOME

TheInfoList



OR:

Binary compounds of hydrogen are binary
chemical compounds A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
containing just
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
and one other
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
. By convention all binary hydrogen compounds are called
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
s even when the hydrogen atom in it is not an
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
. These hydrogen compounds can be grouped into several types.


Overview

Binary hydrogen compounds in
group 1 Group 1 may refer to: * Alkali metal, a chemical element classification for Alkali metal * Group 1 (racing), a historic (until 1981) classification for Touring car racing, applied to standard touring cars. Comparable to modern FIA Group N * Group On ...
are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic. Therefore, this category of hydrides contains only a few members. Hydrides in
group 2 The term Group 2 may refer to: * Alkaline earth metal, a chemical element classification * Astronaut Group 2, also known as The New Nine, the second group of astronauts selected by NASA in 1962 * Group 2 (racing) The Group 2 racing class referred ...
are polymeric covalent hydrides. In these, hydrogen forms bridging covalent bonds, usually possessing mediocre degrees of ionic character, which make them difficult to be accurately described as either covalent or ionic. The one exception is
beryllium hydride Beryllium hydride (systematically named poly eryllane(2)and beryllium dihydride) is an inorganic compound with the chemical formula ()''n'' (also written ()''n'' or ). This alkaline earth hydride is a colourless solid that is insoluble in solv ...
, which has definitively covalent properties. Hydrides in the
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s and
lanthanides The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and ytt ...
are also typically polymeric covalent hydrides. However, they usually possess only weak degrees of ionic character. Usually, these hydrides rapidly decompose into their component elements at ambient conditions. The results consist of metallic matrices with dissolved, often stoichiometric or near so, concentrations of hydrogen, ranging from negligible to substantial. Such a solid can be thought of as a
solid solution A solid solution, a term popularly used for metals, is a homogenous mixture of two different kinds of atoms in solid state and have a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The wor ...
and is alternately termed a metallic- or interstitial hydride. These decomposed solids are identifiable by their ability to conduct electricity and their magnetic properties (the presence of hydrogen is coupled with the delocalisation of the valence electrons of the metal), and their lowered density compared to the metal. Both the saline hydrides and the polymeric covalent hydrides typically react strongly with water and air. It is possible to produce a metallic hydride without requiring decomposition as a necessary step. If a sample of bulk metal is subjected to any one of numerous hydrogen absorption techniques, the characteristics, such as luster and hardness of the metal is often retained to a large degree. Bulk
actinoid The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
hydrides are only known in this form. The affinity for hydrogen for most of the
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
elements are low. Therefore, elements in this block do not form hydrides (the hydride gap) under
standard temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union ...
with the notable exception of
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself ...
. Palladium can absorb up to 900 times its own volume of hydrogen and is therefore actively researched in the field hydrogen storage. Elements in group 13 to 17 (
p-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
) form
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
hydrides (or nonmetal hydrides). In group 12 zinc hydride is a common chemical reagent but
cadmium hydride Cadmium hydride (systematically named cadmium dihydride) is an inorganic compound with the chemical formula (also written as or ). It is a solid, known only as a thermally unstable, insoluble white powder. Nomenclature The systematic name '' ...
and
mercury hydride Mercury hydride may refer to: *Mercury(I) hydride (HgH or Hg2H2), an extremely unstable gas *Mercury(II) hydride Mercury(II) hydride (systematically named mercurane(2) and dihydridomercury) is an inorganic compound with the chemical formula (als ...
are very unstable and esoteric. In group 13
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
hydrides exist as a highly reactive monomer BH3, as an adduct for example
ammonia borane Ammonia borane (also systematically named amminetrihydridoboron), also called borazane, is the chemical compound with the formula H3NBH3. The colourless or white solid is the simplest molecular boron-nitrogen-hydride compound. It has attracted att ...
or as dimeric
diborane Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracte ...
and as a whole group of BH cluster compounds. Alane (AlH3) is a polymer.
Gallium Gallium is a chemical element with the Symbol (chemistry), symbol Ga and atomic number 31. Discovered by France, French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in boron group, group 13 of the periodic table and is similar to ...
exists as the dimer
digallane Digallane (systematically named digallane(6)) is an inorganic compound with the chemical formula (also written or ). It is the dimer of the monomeric compound gallane. The eventual preparation of the pure compound, reported in 1989, was haile ...
.
Indium hydride Indium trihydride is an inorganic compound with the chemical formula (). It has been observed in matrix isolation and laser ablation experiments. Gas phase stability has been predicted. The infrared spectrum was obtained in the gas phase by laser ...
is only stable below . Not much is known about the final
group 13 hydride Group 13 hydrides are chemical compounds containing group 13-hydrogen bonds (elements of group 13: boron, aluminium, gallium, indium, thallium). Trihydrides The simplest series has the chemical formula XH3, with X representing any of the boron fami ...
,
thallium hydride Thallane (systematically named trihydridothallium) is an inorganic compound with the empirical chemical formula . It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular thallane has been isolated in sol ...
. Due to the total number of possible binary saturated compounds with
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
of the type CnH2n+2 being very large, there are many
group 14 hydride Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms (the elements of group 14 are carbon, silicon, germanium, tin, lead and flerovium). Tetrahydrides The tetrahydride series has the chemical formula XH4, with ...
s. Going down the group the number of binary
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
compounds ( silanes) is small (straight or branched but rarely cyclic) for example
disilane Disilane is a chemical compound with chemical formula Si2H6 that was identified in 1902 by Henri Moissan and Samuel Smiles (1877–1953). Moissan and Smiles reported disilane as being among the products formed by the action of dilute acids on meta ...
and trisilane. For
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
only 5 linear chain binary compounds are known as gases or volatile liquids. Examples are n-pentagermane, isopentagermane and neopentagermane. Of tin only the distannane is known.
Plumbane Plumbane, PbH4, is a metal hydride and group 14 hydride composed of lead and hydrogen. Plumbane is not well characterized or well known, and it is thermodynamically unstable with respect to the loss of a hydrogen atom. Derivatives of plumbane inclu ...
is an unstable gas. The
hydrogen halide In chemistry, hydrogen halides (hydrohalic acids when in the aqueous phase) are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, or astatine. ...
s,
hydrogen chalcogenide Hydrogen chalcogenides (also chalcogen hydrides or hydrogen chalcides) are binary compounds of hydrogen with chalcogen atoms (elements of group 16: oxygen, sulfur, selenium, tellurium, and polonium). Water, the first chemical compound in this serie ...
s and
pnictogen hydride Pnictogen hydrides or hydrogen pnictides are binary compounds of hydrogen with pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") atoms (elements of group 15: nitrogen, phosphorus, arsenic, antimony, and bismuth) cova ...
s also form compounds with hydrogen, whose lightest members show many anomalous properties due to
hydrogen bonding In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a l ...
. Non-classical hydrides are those in which extra hydrogen molecules are coordinated as a ligand on the central atoms. These are very unstable but some have been shown to exist.
Polyhydride A polyhydride or superhydride is a compound that contains an abnormally large amount of hydrogen. This can be described as high hydrogen stoichiometry. Examples include iron pentahydride FeH5, LiH6, and LiH7. By contrast, the more well known lit ...
s or superhydrides are compounds in which the number of hydrogen atoms exceed the valency of the combining atom. These may only be stable under extreme pressure, but may be
high temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previo ...
s, such as H3S, superconducting at up to 203 K. Polyhydrides are actively studied with the hope of discovering a room temperature superconductor.


The periodic table of the stable binary hydrides

The relative stability of binary hydrogen compounds and alloys at
standard temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union ...
can be inferred from their standard enthalpy of formation values.Data in KJ/mole gas-phase source: ''Modern Inorganic Chemistry'' W.L. Jolly


Molecular hydrides

The isolation of
monomer In chemistry, a monomer ( ; '' mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification ...
ic molecular hydrides usually require extremely mild conditions, which are partial pressure and cryogenic temperature. The reason for this is threefold - firstly, most molecular hydrides are thermodynamically unstable toward decomposition into their elements; secondly, many molecular hydrides are also thermodynamically unstable toward polymerisation; and thirdly, most molecular hydrides are also kinetically unstable toward these types of reactions due to low
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
barriers. Instability toward decomposition is generally attributable to poor contribution from the orbitals of the heavier elements to the molecular bonding orbitals. Instability toward polymerisation is a consequence of the electron-deficiency of the monomers relative to the polymers. Relativistic effects play an important role in determining the energy levels of molecular orbitals formed by the heavier elements. As a consequence, these molecular hydrides are commonly less electron-deficient than otherwise expected. For example, based on its position in the 12th column of the periodic table alone, mercury(II) hydride would be expected to be rather deficient. However, it is in fact satiated, with the monomeric form being much more energetically favourable than any oligomeric form. The table below shows the monomeric hydride for each element that is closest to, but not surpassing its heuristic valence. A heuristic valence is the valence of an element that strictly obeys the octet, duodectet, and sexdectet valence rules. Elements may be prevented from reaching their heuristic valence by various steric and electronic effects. In the case of chromium, for example, stearic hindrance ensures that both the octahedral and trigonal prismatic molecular geometries for are thermodynamically unstable to rearranging to a Kubas complex structural isomer. Where available, both the enthalpy of formation for each monomer and the enthalpy of formation for the hydride in its standard state is shown (in brackets) to give a rough indication of which monomers tend to undergo aggregation to lower enthalpic states. For example, monomeric lithium hydride has an enthalpy of formation of 139 kJ mol−1, whereas solid lithium hydride has an enthalpy of −91 kJ mol−1. This means that it is energetically favourable for a mole of monomeric LiH to aggregate into the ionic solid, losing 230 kJ as a consequence. Aggregation can occur as a chemical association, such as polymerisation, or it can occur as an electrostatic association, such as the formation of hydrogen-bonding in water.


Classical hydrides

This table includes the thermally unstable dihydrogen complexes for the sake of completeness. As with the above table, only the complexes with the most complete valence is shown, to the negligence of the most stable complex.


Non-classical covalent hydrides

A molecular hydride may be able to bind to hydrogen molecules acting as a ligand. The complexes are termed non-classical covalent hydrides. These complexes contain more hydrogen than the classical covalent hydrides, but are only stable at very low temperatures. They may be isolated in inert gas matrix, or as a cryogenic gas. Others have only been predicted using
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of mo ...
.


Hydrogen solutions

Hydrogen has a highly variable solubility in the elements. When the continuous phase of the solution is a metal, it is called a ''metallic hydride'' or ''interstitial hydride'', on account of the position of the hydrogen within the crystal structure of the metal. In solution, hydrogen can occur in either the atomic or molecular form. For some elements, when hydrogen content exceeds its solubility, the excess precipitates out as a stoichiometric compound. The table below shows the solubility of hydrogen in each element as a molar ratio at and 100 kPa.


Notes


References

{{DEFAULTSORT:Binary Compounds Of Hydrogen Hydrogen compounds H Binary compounds