HOME

TheInfoList



OR:

In the
mining Mining is the extraction of valuable minerals or other geological materials from the Earth, usually from an ore body, lode, vein, seam, reef, or placer deposit. The exploitation of these deposits for raw material is based on the economic ...
industry or extractive metallurgy, beneficiation is any process that improves (benefits) the
economic value In economics, economic value is a measure of the benefit provided by a good or service to an economic agent. It is generally measured through units of currency, and the interpretation is therefore "what is the maximum amount of money a speci ...
of the ore by removing the
gangue In mining, gangue () is the commercially worthless material that surrounds, or is closely mixed with, a wanted mineral in an ore deposit. It is thus distinct from overburden, which is the waste rock or materials overlying an ore or mineral body ...
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
, which results in a higher grade product ( ore concentrate) and a waste stream (
tailings In mining, tailings are the materials left over after the process of separating the valuable fraction from the uneconomic fraction (gangue) of an ore. Tailings are different to overburden, which is the waste rock or other material that overli ...
). There are many different types of beneficiation, with each step furthering the concentration of the original ore.


History

Iron beneficiation has been evident since as early as 800 BC in China with the use of bloomery. A bloomery is the original form of smelting and allowed people to make fires hot enough to melt oxides into a liquid that separates from the iron. Although the bloomery was promptly phased out by the invention of the blast furnace, it was still heavily relied on in Africa and Europe until the early part of the second millennium. The blast furnace was the next step in
smelting Smelting is a process of applying heat to ore, to extract a base metal. It is a form of extractive metallurgy. It is used to extract many metals from their ores, including silver, iron, copper, and other base metals. Smelting uses heat and a ...
iron which produced pig iron. The first blast furnaces in Europe appeared in the early 1200s around Sweden and Belgium, and not until the late 1400s in England. The pig iron poured from a blast furnace is high in carbon making it hard and brittle, making it hard to work with. In 1856 the
Bessemer process The Bessemer process was the first inexpensive industrial process for the mass production of steel from molten pig iron before the development of the open hearth furnace. The key principle is removal of impurities from the iron by oxidation ...
was invented that turns the brittle pig iron into steel, a more malleable metal. Since then, many different technologies have been invented to replace the Bessemer process such as the
electric arc furnace An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc. Industrial arc furnaces range in size from small units of approximately one-tonne capacity (used in foundries for producing cast iron products) up to ...
, basic oxygen steelmaking, and
direct reduced iron Direct reduced iron (DRI), also called sponge iron, is produced from the direct reduction of iron ore (in the form of lumps, pellets, or fines) into iron by a reducing gas or elemental carbon produced from natural gas or coal. Many ores are suit ...
(DRI). For sulfide ores, a different process is taken for beneficiation. The ore needs to have the sulfur removed before smelting can begin. Roasting is the primary method of separating, where wood was placed on heaps of ore and set on fire to help with oxidation. :2 Cu2S + 3 O2 → 2 Cu2O + 2 SO2 The earliest practices of roasting were done outside, allowing large clouds of sulfur dioxide to blow over the land causing serious harm to surrounding ecosystems, both aquatic and terrestrial. The clouds of sulfur dioxide combined with local deforestation for wood needed for roasting compounded damages to the environment, as seen in Sudbury,
Ontario Ontario ( ; ) is one of the thirteen provinces and territories of Canada.Ontario is located in the geographic eastern half of Canada, but it has historically and politically been considered to be part of Central Canada. Located in Central C ...
and the Inco Superstack.


Types of separation


Disaggregation

Beneficiation can begin within the mine itself. Most mines will have a crusher within the mine itself where separation of ore and gangue minerals occurs and as a side effect becomes easier to transport. After the crusher the ore will go through a grinder or a mill to get the ore into fine particles. Dense media separation (DMS) is used to further separate the desired ore from rocks and gangue minerals. This will stratify the crushed aggregate by density making separation easier. Where the DMS occurs in the process can be important, the grinders or mills will process much less waste rock if the DMS occurs beforehand. This will lower wear on the equipment as well as operating costs since there is a lower volume being put through.


Physical separation

After the milling stage the ore can be further separated from the rock. One way this can be achieved is by using the physical properties of the ore to separate it from the rest of the rock. These processes are gravity separation, flotation, and
magnetic separation Magnetic separation is the process of separating components of mixtures by using a magnet to attract magnetic substances. The process that is used for magnetic separation separates non-magnetic substances from those which are magnetic. This techniq ...
. Gravity separation uses centrifugal forces and specific gravity of ores and gangue to separate them. Magnetic separation is used to separate magnetic gangue from the desired ore, or conversely to remove a magnetic target ore from nonmagnetic gangue. DMS is also considered a physical separation.


Chemical separation

Some ore physical properties can not be relied on for separation, therefore chemical processes are used to separate the ores from the rock.
Froth flotation Froth flotation is a process for selectively separating hydrophobic materials from hydrophilic. This is used in mineral processing, paper recycling and waste-water treatment industries. Historically this was first used in the mining industry, wher ...
, leaching, and electrowinning are the most common types of chemical separation. Froth flotation uses hydrophobic and hydrophilic properties to separate the ore from the gangue. Hydrophobic particles will rise to the top of the solution to be skimmed off. Changes to pH in the solution can influence what particles will be hydrophilic. Leaching works by dissolving the desired ore into solution from the rock. Electrowinning is not a primary method of separation, but is required to get the ore out of solution after leaching.


Case examples

In the case of gold, after adsorbing onto carbon, it is put into a sodium hydroxide and cyanide solution. In the solution the gold is pulled out of the carbon and into the solution. The gold ions are removed from solution at steel wool cathodes from electrowinning. The gold then goes off to be smelted. Lithium is hard to separate from gangue due to similarities in the minerals. In order to separate the lithium both physical and chemical separation techniques are used. First froth flotation is used. Due to similarities in mineralogy there is not complete separation after flotation. The gangue that is found with lithium after the flotation are often iron bearing. The float concentrate goes through magnetic separation to remove the magnetic gangue from the nonmagnetic lithium.


See also

* Coal preparation plant * Refining (metallurgy) * Taconite


References


Further reading

* * * * {{cite journal , first=V. V. , last=Suptelya , author2=S. A. Martynov , author3=V. P. Butuzov , author4=V. A. Khvan , doi=10.1007/BF02498516 , title=Beneficiation of synthetic diamonds by ultrasound , date=July 1977 , journal=Journal of Mining Science , pages=439–441 , volume=13 , issue=4, s2cid=129150818 Waste treatment technology Metallurgical processes