Bellows Conjecture
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a flexible polyhedron is a
polyhedral surface In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on th ...
without any boundary edges, whose shape can be continuously changed while keeping the shapes of all of its faces unchanged. The Cauchy rigidity theorem shows that in dimension 3 such a polyhedron cannot be
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
(this is also true in higher dimensions). The first examples of flexible polyhedra, now called Bricard octahedra, were discovered by . They are self-intersecting surfaces isometric to an
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
. The first example of a flexible non-self-intersecting surface in \mathbb^3, the Connelly sphere, was discovered by . Steffen's polyhedron is another non-self-intersecting flexible polyhedron derived from Bricard's octahedra.


Bellows conjecture

In the late 1970s Connelly and D. Sullivan formulated the bellows conjecture stating that the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
of a flexible polyhedron is invariant under flexing. This conjecture was proved for polyhedra homeomorphic to a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is th ...
by using
elimination theory Elimination may refer to: Science and medicine *Elimination reaction, an organic reaction in which two functional groups split to form an organic product *Bodily waste elimination, discharging feces, urine, or foreign substances from the body ...
, and then proved for general
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
2-dimensional polyhedral surfaces by . The proof extends
Piero della Francesca Piero della Francesca (, also , ; – 12 October 1492), originally named Piero di Benedetto, was an Italian painter of the Early Renaissance. To contemporaries he was also known as a mathematician and geometer. Nowadays Piero della Francesca i ...
's formula for the volume of a tetrahedron to a formula for the volume of any polyhedron. The extended formula shows that the volume must be a root of a polynomial whose coefficients depend only on the lengths of the polyhedron's edges. Since the edge lengths cannot change as the polyhedron flexes, the volume must remain at one of the finitely many roots of the polynomial, rather than changing continuously.


Scissor congruence

Connelly conjectured that the
Dehn invariant In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who us ...
of a flexible polyhedron is invariant under flexing. This was known as the strong bellows conjecture or (after it was proven in 2018) the strong bellows theorem. Because all configurations of a flexible polyhedron have both the same volume and the same Dehn invariant, they are scissors congruent to each other, meaning that for any two of these configurations it is possible to dissect one of them into polyhedral pieces that can be reassembled to form the other. The total
mean curvature In mathematics, the mean curvature H of a surface S is an ''extrinsic'' measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space. The ...
of a flexible polyhedron, defined as the sum of the products of edge lengths with exterior dihedral angles, is a function of the Dehn invariant that is also known to stay constant while a polyhedron flexes.


Generalizations

Flexible
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), an ...
s in 4-dimensional Euclidean space and 3-dimensional
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
were studied by . In dimensions n\geq 5, flexible polytopes were constructed by .


See also

*
Flexagon In geometry, flexagons are flat models, usually constructed by folding strips of paper, that can be ''flexed'' or folded in certain ways to reveal faces besides the two that were originally on the back and front. Flexagons are usually square or ...
* Rigid origami


References


Notes


Primary sources

*. *. * * * *. *. * *. *.


Secondary sources

*. *. *. *. *


External links

* {{Mathematics of paper folding Nonconvex polyhedra Mathematics of rigidity