HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a section (or cross section) of a fiber bundle E is a continuous right inverse of the
projection function In set theory, a projection is one of two closely related types of functions or operations, namely: * A set-theoretic operation typified by the jth projection map, written \mathrm_j, that takes an element \vec = (x_1,\ \dots,\ x_j,\ \dots,\ x_k) ...
\pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a
continuous map In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
. The graph of a function g\colon B \to Y can be identified with a function taking its values in the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle, then a section is a choice of point \sigma(x) in each of the fibres. The condition \pi(\sigma(x)) = x simply means that the section at a point x must lie over x . (See image.) For example, when E is a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
a section of E is an element of the vector space E_x lying over each point x \in B. In particular, a
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
on a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
M is a choice of
tangent vector In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ...
at each point of M: this is a ''section'' of the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
of M. Likewise, a
1-form In differential geometry, a one-form (or covector field) on a differentiable manifold is a differential form of degree one, that is, a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the t ...
on M is a section of the
cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This m ...
. Sections, particularly of principal bundles and vector bundles, are also very important tools in
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
. In this setting, the base space B is a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
M, and E is assumed to be a smooth fiber bundle over M (i.e., E is a smooth manifold and \pi\colon E\to M is a smooth map). In this case, one considers the space of smooth sections of E over an open set U, denoted C^(U,E). It is also useful in
geometric analysis Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of ...
to consider spaces of sections with intermediate regularity (e.g., C^k sections, or sections with regularity in the sense of
Hölder condition In mathematics, a real or complex-valued function on -dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants , , such that , f(x) - f(y) , \leq C\, x - y\, ^ for all and in the do ...
s or Sobolev spaces).


Local and global sections

Fiber bundles do not in general have such ''global'' sections (consider, for example, the fiber bundle over S^1 with fiber F = \mathbb \setminus \ obtained by taking the Möbius bundle and removing the zero section), so it is also useful to define sections only locally. A local section of a fiber bundle is a continuous map s \colon U \to E where U is an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
in B and \pi(s(x))=x for all x in U. If (U, \varphi) is a
local trivialization In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
of E, where \varphi is a homeomorphism from \pi^(U) to U\times F (where F is the
fiber Fiber (spelled fibre in British English; from ) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often inco ...
), then local sections always exist over U in bijective correspondence with continuous maps from U to F. The (local) sections form a sheaf over B called the sheaf of sections of E. The space of continuous sections of a fiber bundle E over U is sometimes denoted C(U,E), while the space of global sections of E is often denoted \Gamma(E) or \Gamma(B,E).


Extending to global sections

Sections are studied in
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
and
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, where one of the main goals is to account for the existence or non-existence of global sections. An obstruction denies the existence of global sections since the space is too "twisted". More precisely, obstructions "obstruct" the possibility of extending a local section to a global section due to the space's "twistedness". Obstructions are indicated by particular characteristic classes, which are cohomological classes. For example, a
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
has a global section if and only if it is trivial. On the other hand, a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
always has a global section, namely the zero section. However, it only admits a nowhere vanishing section if its
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
is zero.


Generalizations

Obstructions to extending local sections may be generalized in the following manner: take a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
and form a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
whose objects are open subsets, and morphisms are inclusions. Thus we use a category to generalize a topological space. We generalize the notion of a "local section" using sheaves of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s, which assigns to each object an abelian group (analogous to local sections). There is an important distinction here: intuitively, local sections are like "vector fields" on an open subset of a topological space. So at each point, an element of a ''fixed'' vector space is assigned. However, sheaves can "continuously change" the vector space (or more generally abelian group). This entire process is really the global section functor, which assigns to each sheaf its global section. Then sheaf cohomology enables us to consider a similar extension problem while "continuously varying" the abelian group. The theory of characteristic classes generalizes the idea of obstructions to our extensions.


See also

*
Section (category theory) In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f: X\to Y and g: Y\to X are morphisms whose composition f \circ g: Y\to Y ...
* Fibration *
Gauge theory (mathematics) In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of Connection (mathematics), connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should ...
*
Principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
* Pullback bundle *
Vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...


Notes


References

* Norman Steenrod, ''The Topology of Fibre Bundles'', Princeton University Press (1951). . * David Bleecker, ''Gauge Theory and Variational Principles'', Addison-Wesley publishing, Reading, Mass (1981). . *


External links


Fiber Bundle
PlanetMath * {{MathWorld, urlname=FiberBundle, title=Fiber Bundle Differential topology Algebraic topology Homotopy theory