HOME

TheInfoList



OR:

In mathematics, a bundle is a generalization of a ''
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
'' dropping the condition of a local product structure. The requirement of a local product structure rests on the bundle having a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
. Without this requirement, more general objects can be considered bundles. For example, one can consider a bundle π: ''E''→ ''B'' with ''E'' and ''B'' sets. It is no longer true that the
preimage In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or throug ...
s \pi^(x) must all look alike, unlike fiber bundles where the fibers must all be isomorphic (in the case of
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
s) and homeomorphic.


Definition

A bundle is a triple where are sets and is a map. p 11. * is called the total space * is the base space of the bundle * is the projection This definition of a bundle is quite unrestrictive. For instance, the empty function defines a bundle. Nonetheless it serves well to introduce the basic terminology, and every type of bundle has the basic ingredients of above with restrictions on and usually there is additional structure. For each is the fibre or fiber of the bundle over . A bundle is a subbundle of if and . A cross section is a map such that for each , that is, .


Examples

*If and are
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One m ...
s and is smooth,
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
and in addition a submersion, then the bundle is a fibered manifold. Here and in the following examples, the smoothness condition may be weakened to continuous or sharpened to analytic, or it could be anything reasonable, like continuously differentiable (), in between. *If for each two points and in the base, the corresponding fibers and are
homotopy equivalent In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a defo ...
, then the bundle is a
fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
. *If for each two points and in the base, the corresponding fibers and are homeomorphic, and in addition the bundle satisfies certain conditions of ''local triviality'' outlined in the pertaining linked articles, then the bundle is a
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
. Usually there is additional structure , e.g. a
group structure In the social sciences, a social group can be defined as two or more people who interact with one another, share similar characteristics, and collectively have a sense of unity. Regardless, social groups come in a myriad of sizes and varieties ...
or a vector space structure, on the fibers besides a topology. Then is required that the homeomorphism is an isomorphism with respect to that structure, and the conditions of local triviality are sharpened accordingly. *A
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
is a fiber bundle endowed with a right
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphi ...
with certain properties. One example of a principal bundle is the
frame bundle In mathematics, a frame bundle is a principal fiber bundle F(''E'') associated to any vector bundle ''E''. The fiber of F(''E'') over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E'x''. The general linear group acts na ...
. *If for each two points and in the base, the corresponding fibers and are
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s of the same dimension, then the bundle is a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
if the appropriate conditions of local triviality are satisfied. The
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
is an example of a vector bundle.


Bundle objects

More generally, bundles or bundle objects can be defined in any
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
: in a category C, a bundle is simply an
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
π: ''E'' → ''B''. If the category is not
concrete Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement (cement paste) that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most ...
, then the notion of a preimage of the map is not necessarily available. Therefore these bundles may have no fibers at all, although for sufficiently well behaved categories they do; for instance, for a category with pullbacks and a
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
1 the points of ''B'' can be identified with morphisms ''p'':1→''B'' and the fiber of ''p'' is obtained as the pullback of ''p'' and π. The category of bundles over ''B'' is a subcategory of the
slice category In mathematics, specifically category theory, an overcategory (and undercategory) is a distinguished class of categories used in multiple contexts, such as with covering spaces (espace etale). They were introduced as a mechanism for keeping trac ...
(C↓''B'') of objects over ''B'', while the category of bundles without fixed base object is a subcategory of the
comma category In mathematics, a comma category (a special case being a slice category) is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a category to one another, morphisms become ob ...
(''C''↓''C'') which is also the
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object i ...
C², the category of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
s in C. The category of smooth vector bundles is a bundle object over the category of smooth manifolds in Cat, the
category of small categories In mathematics, specifically in category theory, the category of small categories, denoted by Cat, is the category whose objects are all small categories and whose morphisms are functors between categories. Cat may actually be regarded as a 2-c ...
. The
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, an ...
taking each manifold to its
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
is an example of a section of this bundle object.


See also

*
Fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
*
Fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
* Fibered manifold


Notes


References

* * * {{DEFAULTSORT:Bundle (Mathematics) Category theory Fiber bundles