Bipartite Double Cover
   HOME

TheInfoList



OR:

In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, the bipartite double cover of an undirected graph is a bipartite, covering graph of , with twice as many vertices as . It can be constructed as the tensor product of graphs, . It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of . It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice.


Construction

The bipartite double cover of has two vertices and for each vertex of . Two vertices and are connected by an edge in the double cover if and only if and are connected by an edge in . For instance, below is an illustration of a bipartite double cover of a non-bipartite graph . In the illustration, each vertex in the tensor product is shown using a color from the first term of the product () and a shape from the second term of the product (); therefore, the vertices in the double cover are shown as circles while the vertices are shown as squares. : The bipartite double cover may also be constructed using adjacency matrices (as described below) or as the derived graph of a voltage graph in which each edge of is labeled by the nonzero element of the two-element group.


Examples

The bipartite double cover of the Petersen graph is the Desargues graph: . The bipartite double cover of a complete graph is a crown graph (a complete bipartite graph minus a perfect matching). In particular, the bipartite double cover of the graph of a
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
, , is the graph of a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
. The bipartite double cover of an odd-length cycle graph is a cycle of twice the length, while the bipartite double of any bipartite graph (such as an even length cycle, shown in the following example) is formed by two disjoint copies of the original graph. :


Matrix interpretation

If an undirected graph has a matrix as its adjacency matrix, then the adjacency matrix of the double cover of is :\left begin0&A\\A^T&0\end\right and the biadjacency matrix of the double cover of is just itself. That is, the conversion from a graph to its double cover can be performed simply by reinterpreting as a biadjacency matrix instead of as an adjacency matrix. More generally, the reinterpretation the adjacency matrices of directed graphs as biadjacency matrices provides a combinatorial equivalence between directed graphs and balanced bipartite graphs.


Properties

The bipartite double cover of any graph is a bipartite graph; both parts of the bipartite graph have one vertex for each vertex of . A bipartite double cover is connected if and only if is connected and non-bipartite. The bipartite double cover is a special case of a ''double cover'' (a 2-fold covering graph). A double cover in graph theory can be viewed as a special case of a topological double cover. If is a non-bipartite symmetric graph, the double cover of is also a symmetric graph; several known
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
symmetric graphs may be obtained in this way. For instance, the double cover of is the graph of a cube; the double cover of the Petersen graph is the Desargues graph; and the double cover of the graph of the
dodecahedron In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Po ...
is a 40-vertex symmetric cubic graph. It is possible for two different graphs to have
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
bipartite double covers. For instance, the Desargues graph is not only the bipartite double cover of the Petersen graph, but is also the bipartite double cover of a different graph that is not isomorphic to the Petersen graph.. Not every bipartite graph is a bipartite double cover of another graph; for a bipartite graph to be the bipartite cover of another graph, it is necessary and sufficient that the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
s of include an involution that maps each vertex to a distinct and non-adjacent vertex. For instance, the graph with two vertices and one edge is bipartite but is not a bipartite double cover, because it has no non-adjacent pairs of vertices to be mapped to each other by such an involution; on the other hand, the graph of the cube is a bipartite double cover, and has an involution that maps each vertex to the diametrally opposite vertex. An alternative characterization of the bipartite graphs that may be formed by the bipartite double cover construction was obtained by .


Name

In a connected graph that is not bipartite, only one double cover is bipartite, but when the graph is bipartite or disconnected there may be more than one. For this reason, Tomaž Pisanski has argued that the name "bipartite double cover" should be deprecated in favor of the "canonical double cover" or "Kronecker cover", names which are unambiguous.


Other double covers

In general, a graph may have multiple double covers that are different from the bipartite double cover.. # The graph is a ''covering graph'' of if there is a surjective local isomorphism from to . In the figure, the surjection is indicated by the colours. For example, maps both blue nodes in to the blue node in . Furthermore, let be the
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of a blue node in and let be the neighbourhood of the blue node in ; then the restriction of to is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
from to . In particular, the degree of each blue node is the same. The same applies to each colour. # The graph is a ''double cover'' (or ''2-fold cover'' or ''2-lift'') of if the preimage of each node in has size 2. In the example, there are exactly 2 nodes in that are mapped to the blue node in . In the following figure, the graph is a double cover of the graph : : However, is not the ''bipartite double cover'' of or any other graph; it is not a bipartite graph. If we replace one triangle by a square in the resulting graph has four distinct double covers. Two of them are bipartite but only one of them is the Kronecker cover. As another example, the graph of the
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrical tha ...
is a double cover of the complete graph ; to obtain a covering map from the icosahedron to , map each pair of opposite vertices of the icosahedron to a single vertex of . However, the icosahedron is not bipartite, so it is not the bipartite double cover of . Instead, it can be obtained as the orientable double cover of an
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
of on the projective plane. The double covers of a graph correspond to the different ways to sign the edges of the graph.


See also

* Bipartite half


Notes


References

*. *. The “coverings” in the title of this paper refer to the vertex cover problem, not to bipartite double covers. However, cite this paper as the source of the idea of reinterpreting the adjacency matrix as a biadjacency matrix. *. *. * *. *.


External links

*{{mathworld , title = Bipartite Double Graph , urlname = BipartiteDoubleGraph Graph operations Bipartite graphs