General Considerations on Coordination
Summary of problem
Attention is crucial in determining which phenomena appear to be bound together, noticed, and remembered (Vroomen and Keetels, 2010). This specific binding problem is generally referred to as temporal synchrony. At the most basic level, all neural firing and its adaptation depends on specific consideration to timing (Feldman, 2010). At a much larger level, frequent patterns in large scale neural activity are a major diagnostic and scientific tool.Synchronization theory and research
A popular hypothesis mentioned by Peter Milner, in his 1974 article ''A Model for Visual Shape Recognition'', has been that features of individual objects are bound/segregated via synchronization of the activity of different neurons in the cortex.Shadlen MN, Movshon JA (September 1999)Feature integration theory
Summary of problem
The visual feature binding problem refers to the question of why we do not confuse a red circle and a blue square with a blue circle and a red square. The understanding of the circuits in the brain stimulated for visual feature binding is increasing. A binding process is required for us to accurately encode various visual features in separate cortical areas. In her feature integration theory, Treisman suggested that one of the first stages of binding between features is mediated by the features' links to a common location. The second stage is combining individual features of an object that requires attention, and selecting that object occurs within a "master map" of locations. Psychophysical demonstrations of binding failures under conditions of full attention provide support for the idea that binding is accomplished through common location tags. An implication of these approaches is that sensory data such as color or motion may not normally exist in "unallocated" form. For Merker: "The 'red' of a red ball does not float disembodied in an abstract color space in V4." If color information allocated to a point in the visual field is converted directly, via the instantiation of some form of propositional logic (analogous to that used in computer design) into color information allocated to an "object identity" postulated by a top-down signal as suggested by Purves and Lotto (e.g. There is blue here + Object 1 is here = Object 1 is blue) no special computational task of "binding together" by means such as synchrony may exist. (Although Von der Malsburg poses the problem in terms of binding "propositions" such as "triangle" and "top", these, in isolation, are not propositional.) How signals in the brain come to have propositional content, or meaning, is a much larger issue. However, both Marr and Barlow suggested, on the basis of what was known about neural connectivity in the 1970s that the final integration of features into a percept would be expected to resemble the way words operate in sentences. The role of synchrony in segregational binding remains controversial. Merker has recently suggested that synchrony may be a feature of areas of activation in the brain that relates to an "infrastructural" feature of the computational system analogous to increased oxygen demand indicated via BOLD signal contrast imaging. Apparent specific correlations with segregational tasks may be explainable on the basis of interconnectivity of the areas involved. As a possible manifestation of a need to balance excitation and inhibition over time it might be expected to be associated with reciprocal re-entrant circuits as in the model of Seth et al. (Merker gives the analogy of the whistle from an audio amplifier receiving its own output.)Experimental Work
Visual feature binding is suggested to have a selective attention to the locations of the objects. If indeed spatial attention does play a role in binding integration it will do so primarily when object location acts as a binding cue. A study's findings has shown that functional MRI images indicate regions of the parietal cortex involved in spatial attention, engaged in feature conjunction tasks in single feature tasks. The task involved multiple objects being shown simultaneously at different locations which activated the parietal cortex. Whereas when multiple objects are shown sequentially at the same location the parietal cortex was less engaged.Behavioral Experiments
Defoulzi et al. Investigated feature binding through two feature dimensions, to disambiguate whether a specific combination of color and motion direction is perceived as bound or unbound. Two behaviorally relevant features, including color and motion belonging to the same object, are defined as the "bound" condition. Whereas the "unbound" condition has features that belong to different objects. Local field potentials were recorded from the lateral prefrontal cortex(lPFC) in monkeys and were monitored during different stimulus configurations. The findings suggest a neural representation of visual feature binding in 4 to 12 Hertz frequency bands. It is also suggested that transmission of binding information is relayed through different lPFC neural subpopulations. The data shows a behavioral relevance of binding information that is linked to the animal's reaction time. This includes the involvement of the prefrontal cortex targeted by the dorsal and ventral visual streams in binding visual features from different dimensions (color and motion). It is suggested that the visual feature binding consists of two different mechanisms in visual perception. One mechanism consists of agonistic familiarity of possible combinations of features integrating several temporal integration windows. It is speculated that this process is mediated by neural synchronization processes and temporal synchronization in the visual cortex. The second mechanism is mediated by familiarity with the stimulus and is provided by attentional top-down support from familiar objects.Consciousness and Binding
Summary of Problem
Smythies defines the combination problem, also known as the subjective unity of perception, as "How do the brain mechanisms actually construct the phenomenal object?". Revonsuo equates this to "History
Early philosophers Descartes andExperimental Work on the Biological Basis of Binding
fMRI work
Stoll and colleagues conducted an fMRI experiment to see whether participants would view a dynamic bistable stimulus globally or locally. Responses in lower visual cortical regions were suppressed when participants viewed the stimulus globally. However, if global perception was without shape grouping, higher cortical regions were suppressed. This experiment shows that higher order cortex is important in perceptual grouping. Grassi and colleagues used three different motion stimuli to investigate scene segmentation or how meaningful entities are grouped together and separated from other entities in a scene. Across all stimuli, scene segmentation was associated with increased activity in the posterior parietal cortex and decreased activity in lower visual areas. This suggests that the posterior parietal cortex is important for viewing an integrated whole.EEG work
Mersad and colleagues used an EEG frequency tagging technique to differentiate between brain activity for the integrated whole object and brain activity for parts of the object. The results showed that the visual system binds two humans in close proximity as part of an integrated whole. These results are consistent with evolutionary theories that face-to-face bodies are one of the earliest representations of social interaction. It also supports other experimental work showing that body-selective visual areas respond more strongly to facing bodies.Electron tunneling
Experiments have shown that ferritin and neuromelanin in fixed human ''substantia nigra pars compacta'' (SNc) tissue are able to support widespread electron tunneling. Further experiments have shown that ferritin structures similar to ones found in SNc tissue are able to conduct electrons over distances as great as 80 microns, and that they behave in accordance with Coulomb blockade theory to perform a switching or routing function. Both of these observations are consistent with earlier predictions that are part of a hypothesis that ferritin and neuromelanin can provide a binding mechanism associated with an action selection mechanism, although the hypothesis itself has not yet been directly investigated. The hypothesis and these observations have been applied to Integrated Information Theory.Modern theories
Dennett has proposed that our sense that our experiences are single events is illusory and that, instead, at any one time there are "multiple drafts" of sensory patterns at multiple sites. Each would only cover a fragment of what we think we experience. Arguably, Dennett is claiming that consciousness is not unified and there is no phenomenal binding problem. Most philosophers have difficulty with this position (see Bayne) but some physiologists agree with it. In particular, the demonstration of perceptual asynchrony in psychophysical experiments by Moutoussis and Zeki, when color is perceived before orientation of lines and before motion by 40 and 80 ms, respectively, constitutes an argument that, over these very short time periods, different attributes are consciously perceived at different times, leading to the view that at least over these brief periods of time after visual stimulation, different events are not bound to each other, leading to the view of a disunity of consciousness, at least over these brief time intervals. Dennett's view might be in keeping with evidence from recall experiments and change blindness purporting to show that our experiences are much less rich than we sense them to be – what has been called the Grand Illusion. However, few, if any, other authors suggest the existence of multiple partial "drafts". Moreover, also on the basis of recall experiments, Lamme has challenged the idea that richness is illusory, emphasizing that phenomenal content cannot be equated with content to which there is cognitive access. Dennett does not tie drafts to biophysical events. Multiple sites of causal convergence are invoked in specific biophysical terms by Edwards and Sevush. In this view the sensory signals to be combined in phenomenal experience are available, in full, at each of multiple sites. To avoid non-causal combination each site/event is placed within an individual neuronal dendritic tree. The advantage is that "compresence" is invoked just where convergence occurs neuro-anatomically. The disadvantage, as for Dennett, is the counter-intuitive concept of multiple "copies" of experience. The precise nature of an experiential event or "occasion", even if local, also remains uncertain. The majority of theoretical frameworks for the unified richness of phenomenal experience adhere to the intuitive idea that experience exists as a single copy, and draw on "functional" descriptions of distributed networks of cells. Baars has suggested that certain signals, encoding what we experience, enter a "Global Workspace" within which they are "broadcast" to many sites in the cortex for parallel processing. Dehaene, Changeux and colleagues have developed a detailed neuro-anatomical version of such a workspace. Tononi and colleagues have suggested that the level of richness of an experience is determined by the narrowest information interface "bottleneck" in the largest sub-network or "complex" that acts as an integrated functional unit. Lamme has suggested that networks supporting reciprocal signaling rather than those merely involved in feed-forward signaling support experience. Edelman and colleagues have also emphasized the importance of re-entrant signaling. Cleeremans emphasizes meta-representation as the functional signature of signals contributing to consciousness. In general, such network-based theories are not explicitly theories of how consciousness is unified, or "bound" but rather theories of functional domains within which signals contribute to unified conscious experience. A concern about functional domains is what Rosenberg has called the boundary problem; it is hard to find a unique account of what is to be included and what excluded. Nevertheless, this is, if anything is, the consensus approach. Within the network context, a role for synchrony has been invoked as a solution to the phenomenal binding problem as well as the computational one. In his book, The Astonishing Hypothesis, Crick appears to be offering a solution to BP2 as much as BP1. Even von der Malsburg, introduces detailed computational arguments about object feature binding with remarks about a "psychological moment". The Singer group