Bernstein–Zelevinsky Classification
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Bernstein–Zelevinsky classification, introduced by and , classifies the irreducible complex
smooth representation In mathematics, admissible representations are a well-behaved class of representations used in the representation theory of reductive Lie groups and locally compact totally disconnected groups. They were introduced by Harish-Chandra. Real or com ...
s of a
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
over a
local field In mathematics, a field ''K'' is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. In general, a local field is a locally compact t ...
in terms of
cuspidal representation In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in L^2 spaces. The term ''cuspidal'' is derived, at a certain distance, from the cusp forms of classical modular form theory. In the c ...
s.


References

* * * * {{DEFAULTSORT:Bernstein-Zelevinsky classification Representation theory