In
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, the Behrens–Fisher problem, named after
Walter-Ulrich Behrens and
Ronald Fisher
Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
, is the problem of
interval estimation and
hypothesis testing concerning the difference between the means of two
normally distributed populations when the
variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion ...
s of the two populations are not assumed to be equal, based on two
independent samples.
Specification
One difficulty with discussing the Behrens–Fisher problem and proposed solutions, is that there are many different interpretations of what is meant by "the Behrens–Fisher problem". These differences involve not only what is counted as being a relevant solution, but even the basic statement of the context being considered.
Context
Let ''X''
1, ..., ''X''
''n'' and ''Y''
1, ..., ''Y''
''m'' be
i.i.d. samples from two populations which both come from the same
location–scale family of distributions. The scale parameters are assumed to be unknown and not necessarily equal, and the problem is to assess whether the location parameters can reasonably be treated as equal. Lehmann states that "the Behrens–Fisher problem" is used both for this general form of model when the family of distributions is arbitrary, and for when the restriction to a
normal distribution
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is
f(x) = \frac ...
is made. While Lehmann discusses a number of approaches to the more general problem, mainly based on nonparametrics, most other sources appear to use "the Behrens–Fisher problem" to refer only to the case where the distribution is assumed to be normal: most of this article makes this assumption.
Requirements of solutions
Solutions to the Behrens–Fisher problem have been presented that make use of either a
classical or a
Bayesian inference point of view and either solution would be notionally invalid judged from the other point of view. If consideration is restricted to classical statistical inference only, it is possible to seek solutions to the inference problem that are simple to apply in a practical sense, giving preference to this simplicity over any inaccuracy in the corresponding probability statements. Where exactness of the significance levels of statistical tests is required, there may be an additional requirement that the procedure should make maximum use of the statistical information in the dataset. It is well known that an exact test can be gained by randomly discarding data from the larger dataset until the sample sizes are equal, assembling data in pairs and taking differences, and then using an ordinary
t-test
Student's ''t''-test is a statistical test used to test whether the difference between the response of two groups is Statistical significance, statistically significant or not. It is any statistical hypothesis testing, statistical hypothesis test ...
to test for the mean-difference being zero: clearly this would not be "optimal" in any sense.
The task of specifying interval estimates for this problem is one where a frequentist approach fails to provide an exact solution, although some approximations are available. Standard Bayesian approaches also fail to provide an answer that can be expressed as straightforward simple formulae, but modern computational methods of Bayesian analysis do allow essentially exact solutions to be found. Thus study of the problem can be used to elucidate the differences between the frequentist and Bayesian approaches to interval estimation.
Outline of different approaches
Behrens and Fisher approach
Ronald Fisher
Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
in 1935 introduced
fiducial inference
Fiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with ...
in order to apply it to this problem. He referred to an earlier paper by
Walter-Ulrich Behrens from 1929. Behrens and Fisher proposed to find the
probability distribution
In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
of
:
where
and
are the two
sample means, and ''s''
1 and ''s''
2 are their
standard deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean ( ...
s. See
Behrens–Fisher distribution. Fisher approximated the distribution of this by ignoring the random variation of the relative sizes of the standard deviations,
:
Fisher's solution provoked controversy because it did not have the property that the hypothesis of equal means would be
rejected with probability α if the means were in fact equal. Many other methods of treating the problem have been proposed since, and the effect on the resulting confidence intervals have been investigated.
Welch's approximate t solution
A widely used method is that of
B. L. Welch, who, like Fisher, was at
University College London
University College London (Trade name, branded as UCL) is a Public university, public research university in London, England. It is a Member institutions of the University of London, member institution of the Federal university, federal Uni ...
. The variance of the mean difference
:
results in
:
Welch (1938) approximated the distribution of
by the Type III
Pearson distribution (a scaled
chi-squared distribution) whose first two
moments agree with that of
. This applies to the following number of degrees of freedom (d.f.), which is generally non-integer:
:
Under the null hypothesis of equal expectations, , the distribution of the Behrens–Fisher statistic ''T'', which also depends on the variance ratio ''σ''
12/''σ''
22, could now be approximated by
Student's t distribution with these ''ν'' degrees of freedom. But this ''ν'' contains the population variances ''σ
i''
2, and these are unknown. The following estimate only replaces the population variances by the sample variances:
:
This
is a random variable. A t distribution with a random number of degrees of freedom does not exist. Nevertheless, the Behrens–Fisher ''T'' can be compared with a corresponding quantile of
Student's t distribution with these estimated numbers of degrees of freedom,
, which is generally non-integer. In this way, the boundary between acceptance and rejection region of the test statistic ''T'' is calculated based on the empirical variances ''s
i''
2, in a way that is a smooth function of these.
This method also does not give exactly the nominal rate, but is generally not too far off. However, if the population variances are equal, or if the samples are rather small and the population variances can be assumed to be approximately equal, it is more accurate to use
Student's t-test.
Other approaches
A number of different approaches to the general problem have been proposed, some of which claim to "solve" some version of the problem. Among these are,
[
:*that of Chapman in 1950,
:*that of Prokof’yev and Shishkin in 1974,
:*that of Dudewicz and Ahmed in 1998.
:*that of Chang Wang in 2022.]
In Dudewicz’s comparison of selected methods,[Dudewicz, Ma, Mai, and Su (2007)] it was found that the Dudewicz–Ahmed procedure is recommended for practical use.
Exact solutions to the common and generalized Behrens–Fisher problems
For several decades, it was commonly believed that no exact solution to the common Behrens–Fisher problem existed. However, it was proved in 1966 that it has an exact solution. In 2018 the probability density function of a generalized Behrens–Fisher distribution of ''m'' means and ''m'' distinct standard errors from ''m'' samples of distinct sizes from independent normal distributions with distinct means and variances was proved and the paper also examined its asymptotic approximations. A follow-up paper showed that the classic paired ''t''-test is a central Behrens–Fisher problem with a non-zero population correlation coefficient and derived its corresponding probability density function by solving its associated non-central Behrens–Fisher problem with a nonzero population correlation coefficient. It also solved a more general non-central Behrens–Fisher problem with a non-zero population correlation coefficient in the appendix.
Variants
A minor variant of the Behrens–Fisher problem has been studied. In this instance the problem is, assuming that the two population-means are in fact the same, to make inferences about the common mean: for example, one could require a confidence interval for the common mean.
Generalisations
One generalisation of the problem involves multivariate normal distributions with unknown covariance matrices, and is known as the multivariate Behrens–Fisher problem.[Belloni & Didier (2008)]
The nonparametric Behrens–Fisher problem does not assume that the distributions are normal. Tests include the Cucconi test of 1968 and the Lepage test of 1971.
Notes
References
*
*
*
*
*
*
*
*
*
*Lehmann, E. L. (1975) ''Nonparametrics: Statistical Methods Based on Ranks'', Holden-Day , McGraw-Hill
* Ruben, H. (200
"A simple conservative and robust solution of the Behrens–Fisher problem"
'' Sankhyā:The Indian Journal of Statistics'', Series A, 64 (1),139–155.
*
*
*
*
*
*
External links
* Dong, B.L. (2004
The Behrens–Fisher Problem: An Empirical Likelihood Approach
Econometrics Working Paper EWP0404, University of Victoria
{{DEFAULTSORT:Behrens-Fisher Problem
Mathematical problems
Statistical hypothesis testing