HOME

TheInfoList



OR:

In
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
in solution. It is the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
for a
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
:HA <=> A^- + H^+ known as dissociation in the context of
acid–base reaction In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms an ...
s. The chemical species HA is an
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
that dissociates into , called the
conjugate base A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton () to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reve ...
of the acid, and a
hydrogen ion A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particl ...
, . The system is said to be in equilibrium when the concentrations of its components do not change over time, because both forward and backward reactions are occurring at the same rate. The dissociation constant is defined by :K_\text = \mathrm, or by its
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
ic form :\mathrmK_\ce = - \log_ K_\text = \log_\frac where quantities in square brackets represent the
molar concentration Molar concentration (also called molarity, amount concentration or substance concentration) is the number of moles of solute per liter of solution. Specifically, It is a measure of the concentration of a chemical species, in particular, of a so ...
s of the species at equilibrium. For example, a hypothetical weak acid having ''K''a = 10−5, the value of log ''K''a is the exponent (−5), giving p''K''a = 5. For
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
, ''K''a = 1.8 x 10−5, so p''K''a is 4.7. A lower ''K''a corresponds to a weaker acid (an acid that is less dissociated at equilibrium). The form p''K''a is often used because it provides a convenient
logarithmic scale A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences among the magnitudes of the numbers involved. Unlike a linear Scale (measurement) ...
, where a lower p''K''a corresponds to a stronger acid.


Theoretical background

The acid dissociation constant for an acid is a direct consequence of the underlying
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
of the dissociation reaction; the p''K''a value is directly proportional to the standard
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
change for the reaction. The value of the p''K''a changes with temperature and can be understood qualitatively based on Le Chatelier's principle: when the reaction is
endothermic An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, ...
, ''K''a increases and p''K''a decreases with increasing temperature; the opposite is true for exothermic reactions. The value of p''K''a also depends on molecular structure of the acid in many ways. For example, Pauling proposed two rules: one for successive p''K''a of polyprotic acids (see Polyprotic acids below), and one to estimate the p''K''a of oxyacids based on the number of =O and −OH groups (see Factors that affect p''K''a values below). Other structural factors that influence the magnitude of the acid dissociation constant include inductive effects, mesomeric effects, and
hydrogen bonding In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
. Hammett type equations have frequently been applied to the estimation of p''K''a. The quantitative behaviour of acids and bases in solution can be understood only if their p''K''a values are known. In particular, the pH of a solution can be predicted when the analytical concentration and p''K''a values of all acids and bases are known; conversely, it is possible to calculate the equilibrium concentration of the acids and bases in solution when the pH is known. These calculations find application in many different areas of chemistry, biology, medicine, and geology. For example, many compounds used for medication are weak acids or bases, and a knowledge of the p''K''a values, together with the octanol-water partition coefficient, can be used for estimating the extent to which the compound enters the blood stream. Acid dissociation constants are also essential in aquatic chemistry and chemical oceanography, where the acidity of water plays a fundamental role. In living organisms,
acid–base homeostasis Acid–base homeostasis is the homeostasis, homeostatic regulation of the pH of the Body fluid, body's extracellular fluid (ECF). The proper #Acid–base balance, balance between the acids and Base (chemistry), bases (i.e. the pH) in the ECF is cr ...
and enzyme kinetics are dependent on the p''K''a values of the many acids and bases present in the cell and in the body. In chemistry, a knowledge of p''K''a values is necessary for the preparation of
buffer solution A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solution ...
s and is also a prerequisite for a quantitative understanding of the interaction between acids or bases and metal ions to form complexes. Experimentally, p''K''a values can be determined by potentiometric (pH)
titration Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of Quantitative research, quantitative Analytical chemistry, chemical analysis to determine the concentration of an identified analyte (a substance to be ...
, but for values of p''K''a less than about 2 or more than about 11, spectrophotometric or
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nucleus, nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near and far field, near field) and respond by producing ...
measurements may be required due to practical difficulties with pH measurements.


Definitions

According to Arrhenius's original molecular definition, an acid is a substance that dissociates in aqueous solution, releasing the hydrogen ion (a proton): Chapter 6: Acid–Base and Donor–Acceptor Chemistry : HA <=> A- + H+ The equilibrium constant for this dissociation reaction is known as a dissociation constant. The liberated proton combines with a water molecule to give a hydronium (or oxonium) ion (naked protons do not exist in solution), and so Arrhenius later proposed that the dissociation should be written as an
acid–base reaction In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms an ...
: :HA + H2O <=> A- + H3O+ Brønsted and Lowry generalised this further to a proton exchange reaction: Includes discussion of many organic Brønsted acids. Chapter 5: Acids and Bases : \text + \text \ce \text + \text The acid loses a proton, leaving a conjugate base; the proton is transferred to the base, creating a conjugate acid. For aqueous solutions of an acid HA, the base is water; the conjugate base is and the conjugate acid is the hydronium ion. The Brønsted–Lowry definition applies to other solvents, such as
dimethyl sulfoxide Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula . This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is ...
: the solvent S acts as a base, accepting a proton and forming the conjugate acid . :HA + S <=> A- + SH+ In solution chemistry, it is common to use as an abbreviation for the solvated hydrogen ion, regardless of the solvent. In aqueous solution denotes a solvated hydronium ion rather than a proton. The designation of an acid or base as "conjugate" depends on the context. The conjugate acid of a base B dissociates according to :BH+ + OH- <=> B + H2O which is the reverse of the equilibrium :\ce\text + \ce\text \ce\text + \ce\text The
hydroxide ion Hydroxide is a polyatomic ion, diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually Self-ionization ...
, a well known base, is here acting as the conjugate base of the acid water. Acids and bases are thus regarded simply as donors and acceptors of protons respectively. A broader definition of acid dissociation includes
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
, in which protons are produced by the splitting of water molecules. For example,
boric acid Boric acid, more specifically orthoboric acid, is a compound of boron, oxygen, and hydrogen with formula . It may also be called hydrogen orthoborate, trihydroxidoboron or boracic acid. It is usually encountered as colorless crystals or a white ...
() produces as if it were a proton donor, but it has been confirmed by
Raman spectroscopy Raman spectroscopy () (named after physicist C. V. Raman) is a Spectroscopy, spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Ra ...
that this is due to the hydrolysis equilibrium: :B(OH)3 + 2 H2O <=> B(OH)4- + H3O+ Similarly, metal ion hydrolysis causes ions such as to behave as weak acids: Section 9.1 "Acidity of Solvated Cations" lists many p''K''a values. : l(H2O)63+ + H2O <=> l(H2O)5(OH)2+ + H3O+ According to Lewis's original definition, an acid is a substance that accepts an electron pair to form a
coordinate covalent bond In coordination chemistry, a coordinate covalent bond, also known as a dative bond, dipolar bond, or coordinate bond is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal i ...
. p.698


Equilibrium constant

An acid dissociation constant is a particular example of an
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
. The dissociation of a monoprotic acid, HA, in dilute solution can be written as : HA <=> A- + H+ The thermodynamic equilibrium constant can be defined by Chapter 2: Activity and Concentration Quotients pp 5-10 :K^\ominus = \frac where \ represents the activity, at equilibrium, of the chemical species X. K^\ominus is
dimensionless Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another sy ...
since activity is dimensionless. Activities of the products of dissociation are placed in the numerator, activities of the reactants are placed in the denominator. See activity coefficient for a derivation of this expression. Since activity is the product of
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
and activity coefficient (''γ'') the definition could also be written as :K^\ominus = , \quad \Gamma=\frac where
text Text may refer to: Written word * Text (literary theory) In literary theory, a text is any object that can be "read", whether this object is a work of literature, a street sign, an arrangement of buildings on a city block, or styles of clothi ...
/math> represents the concentration of HA and is a quotient of activity coefficients. To avoid the complications involved in using activities, dissociation constants are determined, where possible, in a medium of high ionic strength, that is, under conditions in which can be assumed to be always constant. For example, the medium might be a solution of 0.1  molar (M)
sodium nitrate Sodium nitrate is the chemical compound with the chemical formula, formula . This alkali metal nitrate salt (chemistry), salt is also known as Chile saltpeter (large deposits of which were historically mined in Chile) to distinguish it from ordi ...
or 3 M
potassium perchlorate Potassium perchlorate is the inorganic salt with the chemical formula K Cl O4. Like other perchlorates, this salt is a strong oxidizer when the solid is heated at high temperature, although it usually reacts very slowly in solution with reducin ...
. With this assumption, :K_\text = \frac = \mathrm :\mathrmK_\ce = -\log_\frac = \log_\frac is obtained. Note, however, that all published dissociation constant values refer to the specific ionic medium used in their determination and that different values are obtained with different conditions, as shown for
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
in the illustration above. When published constants refer to an ionic strength other than the one required for a particular application, they may be adjusted by means of specific ion theory (SIT) and other theories.


Cumulative and stepwise constants

A cumulative equilibrium constant, denoted by is related to the product of stepwise constants, denoted by For a dibasic acid the relationship between stepwise and overall constants is as follows :H2A <=> A^2- + 2H+ :\beta_2 = \frac :\log \beta_2 = \mathrmK_\ce + \mathrmK_\ce Note that in the context of metal-ligand complex formation, the equilibrium constants for the formation of metal complexes are usually defined as ''association'' constants. In that case, the equilibrium constants for ligand protonation are also defined as association constants. The numbering of association constants is the reverse of the numbering of dissociation constants; in this example \log \beta_1 = \mathrmK_\ce


Association and dissociation constants

When discussing the properties of acids it is usual to specify equilibrium constants as acid dissociation constants, denoted by ''K''a, with numerical values given the symbol p''K''a. :K_\text = \frac: \mathrmK_\text = -\log K_\text On the other hand, association constants are used for bases. :K_\text = \frac However, general purpose computer programs that are used to derive equilibrium constant values from experimental data use association constants for both acids and bases. Because stability constants for a metal-ligand complex are always specified as association constants, ligand protonation must also be specified as an association reaction. The definitions show that the value of an acid dissociation constant is the reciprocal of the value of the corresponding association constant: : K_\text = \frac : \log K_\text = - \log K_\text : \mathrmK_\text = - \mathrmK_\text Notes # For a given acid or base in water, , the self-ionization constant of water. # The association constant for the formation of a supramolecular complex may be denoted as Ka; in such cases "a" stands for "association", not "acid". # For polyprotic acids, the numbering of stepwise association constants is the reverse of the numbering of the dissociation constants. For example, for
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
(details in the polyprotic acids section below): ::\begin \log K_ &= \mathrmK_ \\ \log K_ &= \mathrmK_ \\ \log K_ &= \mathrmK_ \end


Temperature dependence

All equilibrium constants vary with
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
according to the van 't Hoff equation :absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
T equals the standard enthalpy change for the reaction divided by the product R times T squared. Here R represents the gas constant, which equals the thermal energy per mole per kelvin. The standard enthalpy is written as Delta H with a superscript plimsoll mark represented by the image strikeO. This equation follows from the definition of the Gibbs energy Delta G equals R times T times the natural logarithm of K."> \frac = \frac is the gas constant and is the
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
. Thus, for exothermic reactions, the standard enthalpy change, , is negative and ''K'' decreases with temperature. For
endothermic An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, ...
reactions, is positive and ''K'' increases with temperature. The standard enthalpy change for a reaction is itself a function of temperature, according to Kirchhoff's law of thermochemistry: :\left(\frac\right)_p = \Delta C_p where is the
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
change at constant pressure. In practice may be taken to be constant over a small temperature range.


Dimensionality

In the equation :K_\mathrm = \mathrm, ''K''a appears to have dimensions of concentration. However, since \Delta G = -RT\ln K, the equilibrium constant, , ''cannot'' have a physical dimension. This apparent paradox can be resolved in various ways. # Assume that the quotient of activity coefficients has a numerical value of 1, so that has the same numerical value as the thermodynamic equilibrium constant K^\ominus. # Express each concentration value as the ratio c/c0, where c0 is the concentration in a ypotheticalstandard state, with a numerical value of 1, by definition. # Express the concentrations on the
mole fraction In chemistry, the mole fraction or molar fraction, also called mole proportion or molar proportion, is a quantity defined as the ratio between the amount of a constituent substance, ''ni'' (expressed in unit of moles, symbol mol), and the to ...
scale. Since mole fraction has no dimension, the quotient of concentrations will, by definition, be a pure number. The procedures, (1) and (2), give identical numerical values for an equilibrium constant. Furthermore, since a concentration is simply proportional to mole fraction and density : :c_i = \frac and since the molar mass is a constant in dilute solutions, an equilibrium constant value determined using (3) will be simply proportional to the values obtained with (1) and (2). It is common practice in
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
to quote a value with a dimension as, for example, "''K''a = 30 mM" in order to indicate the scale, millimolar (mM) or micromolar (μM) of the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
values used for its calculation.


Strong acids and bases

An acid is classified as "strong" when the concentration of its undissociated species is too low to be measured. Any aqueous acid with a p''K''a value of less than 0 is almost completely deprotonated and is considered a ''strong acid''. Sec. 5.1c Strong and weak acids and bases All such acids transfer their protons to water and form the solvent cation species (H3O+ in aqueous solution) so that they all have essentially the same acidity, a phenomenon known as solvent leveling. Sec. 5.2 Solvent leveling They are said to be ''fully dissociated'' in aqueous solution because the amount of undissociated acid, in equilibrium with the dissociation products, is below the detection limit. Likewise, any aqueous base with an association constant p''K''b less than about 0, corresponding to p''K''a greater than about 14, is leveled to OH and is considered a ''strong base''.
Nitric acid Nitric acid is an inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into nitrogen oxide, oxides of nitrogen. Most com ...
, with a p''K'' value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. At lower pH values it behaves as a weak acid. p''K''a values for strong acids have been estimated by theoretical means. For example, the p''K''a value of aqueous HCl has been estimated as −9.3.


Monoprotic acids

After rearranging the expression defining ''K''a, and putting , one obtains : \mathrm = \mathrmK_\text + \log\mathrm This is the Henderson–Hasselbalch equation, from which the following conclusions can be drawn. * At half-neutralization the ratio ; since , the pH at half-neutralization is numerically equal to p''K''a. Conversely, when , the concentration of HA is equal to the concentration of A. * The buffer region extends over the approximate range p''K''a ± 2. Buffering is weak outside the range p''K''a ± 1. At pH ≤ p''K''a − 2 the substance is said to be fully protonated and at pH ≥ p''K''a + 2 it is fully dissociated (deprotonated). * If the pH is known, the ratio may be calculated. This ratio is independent of the analytical concentration of the acid. In water, measurable p''K''a values range from about −2 for a strong acid to about 12 for a very weak acid (or strong base). A
buffer solution A buffer solution is a solution where the pH does not change significantly on dilution or if an acid or base is added at constant temperature. Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solution ...
of a desired pH can be prepared as a mixture of a weak acid and its conjugate base. In practice, the mixture can be created by dissolving the acid in water, and adding the requisite amount of strong acid or base. When the p''K''a and analytical concentration of the acid are known, the extent of dissociation and pH of a solution of a monoprotic acid can be easily calculated using an ICE table.


Polyprotic acids

A polyprotic acid is a compound which may lose more than 1 proton. Stepwise dissociation constants are each defined for the loss of a single proton. The constant for dissociation of the first proton may be denoted as ''K''a1 and the constants for dissociation of successive protons as ''K''a2, etc.
Phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
, , is an example of a polyprotic acid as it can lose three protons. : When the difference between successive p''K'' values is about four or more, as in this example, each species may be considered as an acid in its own right; In fact salts of may be crystallised from solution by adjustment of pH to about 5.5 and salts of may be crystallised from solution by adjustment of pH to about 10. The species distribution diagram shows that the concentrations of the two ions are maximum at pH 5.5 and 10. When the difference between successive p''K'' values is less than about four there is overlap between the pH range of existence of the species in equilibrium. The smaller the difference, the more the overlap. The case of citric acid is shown at the right; solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. According to Pauling's first rule, successive p''K'' values of a given acid increase . For oxyacids with more than one ionizable hydrogen on the same atom, the p''K''a values often increase by about 5 units for each proton removed, as in the example of phosphoric acid above. It can be seen in the table above that the second proton is removed from a negatively charged species. Since the proton carries a positive charge extra work is needed to remove it, which is why p''K''a2 is greater than p''K''a1. p''K''a3 is greater than p''K''a2 because there is further charge separation. When an exception to Pauling's rule is found, it indicates that a major change in structure is also occurring. In the case of (aq), the vanadium is octahedral, 6-coordinate, whereas vanadic acid is
tetrahedral In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
, 4-coordinate. This means that four "particles" are released with the first dissociation, but only two "particles" are released with the other dissociations, resulting in a much greater entropy contribution to the standard
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
change for the first reaction than for the others. :


Isoelectric point

For substances in solution, the isoelectric point (p''I'') is defined as the pH at which the sum, weighted by charge value, of concentrations of positively charged species is equal to the weighted sum of concentrations of negatively charged species. In the case that there is one species of each type, the isoelectric point can be obtained directly from the p''K'' values. Take the example of
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
, defined as AH. There are two dissociation equilibria to consider. : AH2+ <=> AH~+ H+ \qquad HH+] = \mathit_1 H2+/chem> : AH <=> A^-~+H+ \qquad ^- H+] = \mathit_2 H/chem> Substitute the expression for Hfrom the second equation into the first equation : ^- H+]^2 = \mathit_1 \mathit_2 H2+/chem> At the isoelectric point the concentration of the positively charged species, , is equal to the concentration of the negatively charged species, , so : ce2 = K_1 K_2 Therefore, taking
cologarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then ...
s, the pH is given by : \mathrmI = \frac p''I'' values for amino acids are listed at
proteinogenic amino acid Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation from RNA. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) ...
. When more than two charged species are in equilibrium with each other a full speciation calculation may be needed.


Bases and basicity

The equilibrium constant ''K''b for a base is usually defined as the ''association'' constant for protonation of the base, B, to form the conjugate acid, . : B + H2O <=> HB+ + OH- Using similar reasoning to that used before : \begin K_\text &= \mathrm \\ \mathrmK_\text &= - \log_\left(K_\text\right) \end ''K''b is related to ''K''a for the conjugate acid. In water, the concentration of the
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
ion, , is related to the concentration of the hydrogen ion by , therefore : \mathrm = \frac Substitution of the expression for into the expression for ''K''b gives : K_\text = \frac = \frac When ''K''a, ''K''b and ''K''w are determined under the same conditions of temperature and ionic strength, it follows, taking
cologarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then ...
s, that p''K''b = p''K''w − p''K''a. In aqueous solutions at 25 °C, p''K''w is 13.9965, Section D–152 so :\mathrmK_\text \approx 14 - \mathrmK_\text with sufficient accuracy for most practical purposes. In effect there is no need to define p''K''b separately from p''K''a, but it is done here as often only p''K''b values can be found in the older literature. For an hydrolyzed metal ion, ''K''b can also be defined as a stepwise ''dissociation'' constant : \mathrm_p(\ce)_q \leftrightharpoons \mathrm_p(\ce)^_ + \ce : K_\mathrm = \frac This is the reciprocal of an association constant for formation of the complex.


Basicity expressed as dissociation constant of conjugate acid

Because the relationship p''K''b = p''K''w − p''K''a holds only in aqueous solutions (though analogous relationships apply for other amphoteric solvents), subdisciplines of chemistry like
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
that usually deal with nonaqueous solutions generally do not use p''K''b as a measure of basicity. Instead, the p''K''a of the conjugate acid, denoted by p''K''aH, is quoted when basicity needs to be quantified. For base B and its conjugate acid BH+ in equilibrium, this is defined as : \mathrmK_\mathrm(\mathrm)=\mathrmK_\mathrm(\ce)=-\log_\Big(\frac\Big) A higher value for p''K''aH corresponds to a stronger base. For example, the values and indicate that (triethylamine) is a stronger base than (pyridine).


Amphoteric substances

An amphoteric substance is one that can act as an acid or as a base, depending on pH. Water (below) is amphoteric. Another example of an amphoteric molecule is the
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
ion that is the conjugate base of the
carbonic acid Carbonic acid is a chemical compound with the chemical formula . The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion ...
molecule H2CO3 in the equilibrium :H2CO3 + H2O <=> HCO3- + H3O+ but also the conjugate acid of the
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
ion in (the reverse of) the equilibrium :HCO3- + OH- <=> CO3^2- + H2O
Carbonic acid Carbonic acid is a chemical compound with the chemical formula . The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion ...
equilibria are important for
acid–base homeostasis Acid–base homeostasis is the homeostasis, homeostatic regulation of the pH of the Body fluid, body's extracellular fluid (ECF). The proper #Acid–base balance, balance between the acids and Base (chemistry), bases (i.e. the pH) in the ECF is cr ...
in the human body. An
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
is also amphoteric with the added complication that the neutral molecule is subject to an internal acid–base equilibrium in which the basic amino group attracts and binds the proton from the acidic carboxyl group, forming a
zwitterion In chemistry, a zwitterion ( ; ), also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively and negatively charged functional groups. : (1,2- dipolar compounds, such as ylides, are sometimes excluded from ...
. : NH2CHRCO2H <=> NH3+CHRCO2- At pH less than about 5 both the carboxylate group and the amino group are protonated. As pH increases the acid dissociates according to : NH3+CHRCO2H <=> NH3+CHRCO2- + H+ At high pH a second dissociation may take place. : NH3+CHRCO2- <=> NH2CHRCO2- + H+ Thus the amino acid molecule is amphoteric because it may either be protonated or deprotonated.


Water self-ionization

The water molecule may either gain or lose a proton. It is said to be amphiprotic. The ionization equilibrium can be written : H2O <=> OH- + H+ where in aqueous solution denotes a solvated proton. Often this is written as the
hydronium In chemistry, hydronium (hydroxonium in traditional British English) is the cation , also written as , the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved ...
ion , but this formula is not exact because in fact there is solvation by more than one water molecule and species such as , , and are also present. The equilibrium constant is given by : K_\text = \mathrm With solutions in which the solute concentrations are not very high, the concentration can be assumed to be constant, regardless of solute(s); this expression may then be replaced by : K_\text = mathrm^+ mathrm^-, The self-ionization constant of water, ''K''w, is thus just a special case of an acid dissociation constant. A logarithmic form analogous to p''K''a may also be defined :\mathrmK_\text = - \log_\left(K_\text\right) These data can be modelled by a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
with : \mathrm p K_\mathrm w = 14.94 - 0.04209\ T + 0.0001718\ T^2 From this equation, p''K''w = 14 at 24.87 °C. At that temperature both hydrogen and hydroxide ions have a concentration of 10−7 M.


Acidity in nonaqueous solutions

A solvent will be more likely to promote ionization of a dissolved acidic molecule in the following circumstances: # It is a protic solvent, capable of forming hydrogen bonds. # It has a high donor number, making it a strong Lewis base. # It has a high
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
(relative permittivity), making it a good solvent for ionic species. p''K''a values of organic compounds are often obtained using the aprotic solvents
dimethyl sulfoxide Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula . This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is ...
(DMSO) and
acetonitrile Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not class ...
(ACN). DMSO is widely used as an alternative to water because it has a lower dielectric constant than water, and is less polar and so dissolves non-polar,
hydrophobic In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thu ...
substances more easily. It has a measurable p''K''a range of about 1 to 30. Acetonitrile is less basic than DMSO, and, so, in general, acids are weaker and bases are stronger in this solvent. Some p''K''a values at 25 °C for acetonitrile (ACN) and dimethyl sulfoxide (DMSO). are shown in the following tables. Values for water are included for comparison. Ionization of acids is less in an acidic solvent than in water. For example,
hydrogen chloride The Chemical compound, compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hyd ...
is a weak acid when dissolved in
acetic acid Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
. This is because acetic acid is a much weaker base than water. : HCl + CH3CO2H <=> Cl- + CH3C(OH)2+ : \text + \text \ce \text + \text Compare this reaction with what happens when acetic acid is dissolved in the more acidic solvent pure sulfuric acid: :H2SO4 + CH3CO2H <=> HSO4- + CH3C(OH)2+ The unlikely geminal diol species is stable in these environments. For aqueous solutions the pH scale is the most convenient
acidity function An acidity function is a measure of the acidity of a medium or solvent system, usually expressed in terms of its ability to donate protons to (or accept protons from) a solute ( Brønsted acidity). The pH scale is by far the most commonly used a ...
. Other acidity functions have been proposed for non-aqueous media, the most notable being the Hammett acidity function, ''H''0, for
superacid In chemistry, a superacid (according to the original definition) is an acid with an acidity greater than that of 100% pure sulfuric acid (), which has a Hammett acidity function (''H''0) of −12. According to the modern definition, a superacid i ...
media and its modified version ''H'' for superbasic media. In aprotic solvents, oligomers, such as the well-known acetic acid dimer, may be formed by hydrogen bonding. An acid may also form hydrogen bonds to its conjugate base. This process, known as homoconjugation, has the effect of enhancing the acidity of acids, lowering their effective p''K''a values, by stabilizing the conjugate base. Homoconjugation enhances the proton-donating power of toluenesulfonic acid in acetonitrile solution by a factor of nearly 800. In aqueous solutions, homoconjugation does not occur, because water forms stronger hydrogen bonds to the conjugate base than does the acid.


Mixed solvents

When a compound has limited solubility in water it is common practice (in the pharmaceutical industry, for example) to determine p''K''a values in a solvent mixture such as water/ dioxane or water/
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
, in which the compound is more soluble. In the example shown at the right, the p''K''a value rises steeply with increasing percentage of dioxane as the dielectric constant of the mixture is decreasing. A p''K''a value obtained in a mixed solvent cannot be used directly for aqueous solutions. The reason for this is that when the solvent is in its standard state its activity is ''defined'' as one. For example, the standard state of water:dioxane mixture with 9:1
mixing ratio In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration) or mass ratio (see stoichiometry). In a ...
is precisely that solvent mixture, with no added solutes. To obtain the p''K''a value for use with aqueous solutions it has to be extrapolated to zero co-solvent concentration from values obtained from various co-solvent mixtures. These facts are obscured by the omission of the solvent from the expression that is normally used to define p''K''a, but p''K''a values obtained in a ''given'' mixed solvent can be compared to each other, giving relative acid strengths. The same is true of p''K''a values obtained in a particular non-aqueous solvent such a DMSO. A universal, solvent-independent, scale for acid dissociation constants has not been developed, since there is no known way to compare the standard states of two different solvents.


Factors that affect p''K''a values

Pauling's second rule is that the value of the first p''K''a for acids of the formula XO''m''(OH)''n'' depends primarily on the number of oxo groups ''m'', and is approximately independent of the number of hydroxy groups ''n'', and also of the central atom X. Approximate values of p''K''a are 8 for ''m'' = 0, 2 for ''m'' = 1, −3 for ''m'' = 2 and < −10 for ''m'' = 3. Alternatively, various numerical formulas have been proposed including p''K''a = 8 − 5''m'' (known as Bell's rule), p''K''a = 7 − 5''m'',Douglas B., McDaniel D.H. and Alexander J.J. ''Concepts and Models of Inorganic Chemistry'' (2nd ed. Wiley 1983) p.526 or p''K''a = 9 − 7''m''. The dependence on ''m'' correlates with the oxidation state of the central atom, X: the higher the oxidation state the stronger the oxyacid. For example, p''K''a for HClO is 7.2, for HClO2 is 2.0, for HClO3 is −1 and HClO4 is a strong acid (). The increased acidity on adding an oxo group is due to stabilization of the conjugate base by delocalization of its negative charge over an additional oxygen atom. This rule can help assign molecular structure: for example,
phosphorous acid Phosphorous acid (or phosphonic acid) is the Compound (chemistry), compound described by the chemical formula, formula . It is diprotic (readily ionizes two protons), not triprotic as might be suggested by its formula. Phosphorous acid is an in ...
, having molecular formula H3PO3, has a p''K''a near 2, which suggested that the structure is HPO(OH)2, as later confirmed by NMR spectroscopy, and not P(OH)3, which would be expected to have a p''K''a near 8. Inductive effects and mesomeric effects affect the p''K''a values. A simple example is provided by the effect of replacing the hydrogen atoms in acetic acid by the more electronegative chlorine atom. The electron-withdrawing effect of the substituent makes ionisation easier, so successive p''K''a values decrease in the series 4.7, 2.8, 1.4, and 0.7 when 0, 1, 2, or 3 chlorine atoms are present. The Hammett equation, provides a general expression for the effect of substituents. : log(''K''a) = log(''K'') + ρσ. ''K''a is the dissociation constant of a substituted compound, ''K'' is the dissociation constant when the substituent is hydrogen, ρ is a property of the unsubstituted compound and σ has a particular value for each substituent. A plot of log(''K''a) against σ is a straight line with intercept log(''K'') and
slope In mathematics, the slope or gradient of a Line (mathematics), line is a number that describes the direction (geometry), direction of the line on a plane (geometry), plane. Often denoted by the letter ''m'', slope is calculated as the ratio of t ...
ρ. This is an example of a linear free energy relationship as log(''K''a) is proportional to the standard free energy change. Hammett originally formulated the relationship with data from
benzoic acid Benzoic acid () is a white (or colorless) solid organic compound with the formula , whose structure consists of a benzene ring () with a carboxyl () substituent. The benzoyl group is often abbreviated "Bz" (not to be confused with "Bn," which ...
with different substituents in the '' ortho-'' and '' para-'' positions: some numerical values are in Hammett equation. This and other studies allowed substituents to be ordered according to their electron-withdrawing or electron-releasing power, and to distinguish between inductive and mesomeric effects.
Alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
s do not normally behave as acids in water, but the presence of a double bond adjacent to the OH group can substantially decrease the p''K''a by the mechanism of keto–enol tautomerism.
Ascorbic acid Ascorbic acid is an organic compound with formula , originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent. Asco ...
is an example of this effect. The diketone 2,4-pentanedione ( acetylacetone) is also a weak acid because of the keto–enol equilibrium. In aromatic compounds, such as
phenol Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile and can catch fire. The molecule consists of a phenyl group () ...
, which have an OH substituent,
conjugation Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change o ...
with the aromatic ring as a whole greatly increases the stability of the deprotonated form. Structural effects can also be important. The difference between
fumaric acid Fumaric acid or ''trans''-butenedioic acid is an organic compound with the formula HO2CCH=CHCO2H. A white solid, fumaric acid occurs widely in nature. It has a fruit-like taste and has been used as a food additive. Its E number is E297. The sa ...
and
maleic acid Maleic acid or ''cis''-butenedioic acid is an organic compound that is a dicarboxylic acid, a molecule with two carboxyl groups. Its chemical formula is HO2CCH=CHCO2H. Maleic acid is the ''cis'' Cis–trans isomerism, isomer of butenedioic acid, ...
is a classic example. Fumaric acid is (E)-1,4-but-2-enedioic acid, a ''trans''
isomer In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element (chemistry), element – but distinct arrangements of atoms in space. ''Isomerism'' refers to the exi ...
, whereas maleic acid is the corresponding ''cis'' isomer, i.e. (Z)-1,4-but-2-enedioic acid (see cis-trans isomerism). Fumaric acid has p''K''a values of approximately 3.0 and 4.5. By contrast, maleic acid has p''K''a values of approximately 1.5 and 6.5. The reason for this large difference is that when one proton is removed from the ''cis'' isomer (maleic acid) a strong intramolecular
hydrogen bond In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
is formed with the nearby remaining carboxyl group. This favors the formation of the maleate H+, and it opposes the removal of the second proton from that species. In the ''trans'' isomer, the two carboxyl groups are always far apart, so hydrogen bonding is not observed. Proton sponge, 1,8-bis(dimethylamino)naphthalene, has a p''K''a value of 12.1. It is one of the strongest amine bases known. The high basicity is attributed to the relief of strain upon protonation and strong internal hydrogen bonding. Effects of the solvent and solvation should be mentioned also in this section. It turns out, these influences are more subtle than that of a dielectric medium mentioned above. For example, the expected (by electronic effects of methyl substituents) and observed in gas phase order of basicity of methylamines, Me3N > Me2NH > MeNH2 > NH3, is changed by water to Me2NH > MeNH2 > Me3N > NH3. Neutral methylamine molecules are hydrogen-bonded to water molecules mainly through one acceptor, N–HOH, interaction and only occasionally just one more donor bond, NH–OH2. Hence, methylamines are stabilized to about the same extent by hydration, regardless of the number of methyl groups. In stark contrast, corresponding methylammonium cations always utilize all the available protons for donor NH–OH2 bonding. Relative stabilization of methylammonium ions thus decreases with the number of methyl groups explaining the order of water basicity of methylamines.


Thermodynamics

An equilibrium constant is related to the standard Gibbs energy change for the reaction, so for an acid dissociation constant : \Delta G^\ominus = -RT \ln K_\text \approx 2.303 RT\ \mathrmK_\text. ''R'' is the gas constant and ''T'' is the
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
. Note that and . At 25 °C, Δ''G'' in kJ·mol−1 ≈ 5.708 p''K''a (1 kJ·mol−1 = 1000
joule The joule ( , or ; symbol: J) is the unit of energy in the International System of Units (SI). In terms of SI base units, one joule corresponds to one kilogram- metre squared per second squared One joule is equal to the amount of work d ...
s per mole). Free energy is made up of an
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
term and an
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
term. :\Delta G^\ominus = \Delta H^\ominus - T \Delta S^\ominus The standard enthalpy change can be determined by
calorimetry In chemistry and thermodynamics, calorimetry () is the science or act of measuring changes in '' state variables'' of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reac ...
or by using the van 't Hoff equation, though the calorimetric method is preferable. When both the standard enthalpy change and acid dissociation constant have been determined, the standard entropy change is easily calculated from the equation above. In the following table, the entropy terms are calculated from the experimental values of p''K''a and Δ''H''. The data were critically selected and refer to 25 °C and zero ionic strength, in water. The first point to note is that, when p''K''a is positive, the standard free energy change for the dissociation reaction is also positive. Second, some reactions are exothermic and some are
endothermic An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy (or internal energy ) of the system.Oxtoby, D. W; Gillis, ...
, but, when Δ''H'' is negative ''T''ΔS is the dominant factor, which determines that Δ''G'' is positive. Last, the entropy contribution is always unfavourable () in these reactions. Ions in aqueous solution tend to orient the surrounding water molecules, which orders the solution and decreases the entropy. The contribution of an ion to the entropy is the partial molar entropy which is often negative, especially for small or highly charged ions. The ionization of a neutral acid involves formation of two ions so that the entropy decreases (). On the second ionization of the same acid, there are now three ions and the anion has a charge, so the entropy again decreases. Note that the ''standard'' free energy change for the reaction is for the changes ''from'' the reactants in their standard states ''to'' the products in their standard states. The free energy change ''at'' equilibrium is zero since the
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
s of reactants and products are equal at equilibrium.


Experimental determination

The experimental determination of p''K''a values is commonly performed by means of
titration Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of Quantitative research, quantitative Analytical chemistry, chemical analysis to determine the concentration of an identified analyte (a substance to be ...
s, in a medium of high ionic strength and at constant temperature. A typical procedure would be as follows. A solution of the compound in the medium is acidified with a strong acid to the point where the compound is fully protonated. The solution is then titrated with a strong base until all the protons have been removed. At each point in the titration pH is measured using a glass electrode and a pH meter. The equilibrium constants are found by fitting calculated pH values to the observed values, using the method of
least squares The method of least squares is a mathematical optimization technique that aims to determine the best fit function by minimizing the sum of the squares of the differences between the observed values and the predicted values of the model. The me ...
. The total volume of added strong base should be small compared to the initial volume of titrand solution in order to keep the ionic strength nearly constant. This will ensure that p''K''a remains invariant during the titration. A calculated titration curve for oxalic acid is shown at the right. Oxalic acid has p''K''a values of 1.27 and 4.27. Therefore, the buffer regions will be centered at about pH 1.3 and pH 4.3. The buffer regions carry the information necessary to get the p''K''a values as the concentrations of acid and conjugate base change along a buffer region. Between the two buffer regions there is an end-point, or
equivalence point The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles o ...
, at about pH 3. This end-point is not sharp and is typical of a diprotic acid whose buffer regions overlap by a small amount: p''K''a2 − p''K''a1 is about three in this example. (If the difference in p''K'' values were about two or less, the end-point would not be noticeable.) The second end-point begins at about pH 6.3 and is sharp. This indicates that all the protons have been removed. When this is so, the solution is not buffered and the pH rises steeply on addition of a small amount of strong base. However, the pH does not continue to rise indefinitely. A new buffer region begins at about pH 11 (p''K''w − 3), which is where
self-ionization of water The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in properties of water, pure water or in an aqueous solution, in which a wa ...
becomes important. It is very difficult to measure pH values of less than two in aqueous solution with a glass electrode, because the Nernst equation breaks down at such low pH values. To determine p''K'' values of less than about 2 or more than about 11 spectrophotometric or
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nucleus, nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near and far field, near field) and respond by producing ...
measurements may be used instead of, or combined with, pH measurements. When the glass electrode cannot be employed, as with non-aqueous solutions, spectrophotometric methods are frequently used. These may involve absorbance or
fluorescence Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
measurements. In both cases the measured quantity is assumed to be proportional to the sum of contributions from each photo-active species; with absorbance measurements the Beer–Lambert law is assumed to apply.
Isothermal titration calorimetry In chemical thermodynamics, isothermal titration calorimetry (ITC) is a physical technique used to determine the Conjugate variables (thermodynamics), thermodynamic parameters of interactions in Solution (chemistry), solution. ITC is the only tec ...
(ITC) may be used to determine both a p''K'' value and the corresponding standard enthalpy for acid dissociation. Software to perform the calculations is supplied by the instrument manufacturers for simple systems. Aqueous solutions with normal water cannot be used for 1H NMR measurements but
heavy water Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
, , must be used instead. 13C NMR data, however, can be used with normal water and 1H NMR spectra can be used with non-aqueous media. The quantities measured with NMR are time-averaged
chemical shift In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure of ...
s, as proton exchange is fast on the NMR time-scale. Other chemical shifts, such as those of 31P can be measured.


Micro-constants

For some polyprotic acids, dissociation (or association) occurs at more than one nonequivalent site, and the observed macroscopic equilibrium constant, or macro-constant, is a combination of micro-constants involving distinct species. When one reactant forms two products in parallel, the macro-constant is a sum of two micro-constants, K = K_X + K_Y. This is true for example for the deprotonation of the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
, which exists in solution as a neutral
zwitterion In chemistry, a zwitterion ( ; ), also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively and negatively charged functional groups. : (1,2- dipolar compounds, such as ylides, are sometimes excluded from ...
. The two micro-constants represent deprotonation either at sulphur or at nitrogen, and the macro-constant sum here is the acid dissociation constant K_\mathrm a = K_\mathrm a \ce + K_\mathrm a \ce. Similarly, a base such as spermine has more than one site where protonation can occur. For example, mono-protonation can occur at a terminal group or at internal groups. The ''K''b values for dissociation of spermine protonated at one or other of the sites are examples of micro-constants. They cannot be determined directly by means of pH, absorbance, fluorescence or NMR measurements; a measured ''K''b value is the sum of the K values for the micro-reactions. : K_\text = K_\text + K_\text Nevertheless, the site of protonation is very important for biological function, so mathematical methods have been developed for the determination of micro-constants. When two reactants form a single product in parallel, the macro-constant 1/K = 1/K_X + 1/K_Y . For example, the abovementioned equilibrium for spermine may be considered in terms of ''K''a values of two tautomeric conjugate acids, with macro-constant In this case 1/K_\text = 1/K_ + 1/K_. This is equivalent to the preceding expression since K_\mathrm is proportional to 1/K_\mathrm. When a reactant undergoes two reactions in series, the macro-constant for the combined reaction is the product of the micro-constant for the two steps. For example, the abovementioned cysteine zwitterion can lose two protons, one from sulphur and one from nitrogen, and the overall macro-constant for losing two protons is the product of two dissociation constants K = K_\mathrm a \ce K_\mathrm a \ce. This can also be written in terms of logarithmic constants as \mathrm p K = \mathrm p K_\mathrm a \ce + \mathrm p K_\mathrm a \ce.


Applications and significance

A knowledge of p''K''a values is important for the quantitative treatment of systems involving acid–base equilibria in solution. Many applications exist in
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
; for example, the p''K''a values of proteins and
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
side chains are of major importance for the activity of enzymes and the stability of proteins. Protein p''K''a values cannot always be measured directly, but may be calculated using theoretical methods. Buffer solutions are used extensively to provide solutions at or near the physiological pH for the study of biochemical reactions; the design of these solutions depends on a knowledge of the p''K''a values of their components. Important buffer solutions include
MOPS MOPS (3-(''N''-morpholino)propanesulfonic acid) is a buffer solution, buffer introduced in the 1960s, one of the twenty Good's buffers. It is a structural analog to MES (buffer), MES, and like MES, its structure contains a morpholine ring. HEPES ...
, which provides a solution with pH 7.2, and tricine, which is used in gel electrophoresis. Buffering is an essential part of acid base physiology including
acid–base homeostasis Acid–base homeostasis is the homeostasis, homeostatic regulation of the pH of the Body fluid, body's extracellular fluid (ECF). The proper #Acid–base balance, balance between the acids and Base (chemistry), bases (i.e. the pH) in the ECF is cr ...
, and is key to understanding disorders such as acid–base disorder. The
isoelectric point The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electric charge, electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). Howe ...
of a given molecule is a function of its p''K'' values, so different molecules have different isoelectric points. This permits a technique called isoelectric focusing, which is used for separation of proteins by 2-D gel polyacrylamide gel electrophoresis. Buffer solutions also play a key role in
analytical chemistry Analytical skill, Analytical chemistry studies and uses instruments and methods to Separation process, separate, identify, and Quantification (science), quantify matter. In practice, separation, identification or quantification may constitute t ...
. They are used whenever there is a need to fix the pH of a solution at a particular value. Compared with an aqueous solution, the pH of a buffer solution is relatively insensitive to the addition of a small amount of strong acid or strong base. The buffer capacity of a simple buffer solution is largest when pH = p''K''a. In acid–base extraction, the efficiency of extraction of a compound into an organic phase, such as an
ether In organic chemistry, ethers are a class of compounds that contain an ether group, a single oxygen atom bonded to two separate carbon atoms, each part of an organyl group (e.g., alkyl or aryl). They have the general formula , where R and R� ...
, can be optimised by adjusting the pH of the aqueous phase using an appropriate buffer. At the optimum pH, the concentration of the electrically neutral species is maximised; such a species is more soluble in organic solvents having a low
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
than it is in water. This technique is used for the purification of weak acids and bases. A
pH indicator A pH indicator is a halochromism, halochromic chemical compound added in small amounts to a Solution (chemistry), solution so the pH (acidity or Base (chemistry), basicity) of the solution can be determined visually or spectroscopically by chang ...
is a weak acid or weak base that changes colour in the transition pH range, which is approximately p''K''a ± 1. The design of a universal indicator requires a mixture of indicators whose adjacent p''K''a values differ by about two, so that their transition pH ranges just overlap. In
pharmacology Pharmacology is the science of drugs and medications, including a substance's origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use, and toxicology. More specifically, it is the study of the interactions that occur betwee ...
, ionization of a compound alters its physical behaviour and macro properties such as solubility and
lipophilicity Lipophilicity (from Greek λίπος "fat" and φίλος "friendly") is the ability of a chemical compound to dissolve in fats, oils, lipids, and non-polar solvents such as hexane or toluene. Such compounds are called lipophilic (translated ...
, log ''p''). For example, ionization of any compound will increase the solubility in water, but decrease the lipophilicity. This is exploited in
drug development Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for regu ...
to increase the concentration of a compound in the blood by adjusting the p''K''a of an ionizable group. Knowledge of p''K''a values is important for the understanding of coordination complexes, which are formed by the interaction of a metal ion, Mm+, acting as a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any ...
, with a
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
, L, acting as a Lewis base. However, the ligand may also undergo protonation reactions, so the formation of a complex in aqueous solution could be represented symbolically by the reaction : ce + \ce \ ce_ \ce + \ce To determine the equilibrium constant for this reaction, in which the ligand loses a proton, the p''K''a of the protonated ligand must be known. In practice, the ligand may be polyprotic; for example
EDTA Ethylenediaminetetraacetic acid (EDTA), also called EDTA acid, is an aminopolycarboxylic acid with the formula . This white, slightly water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-solubl ...
4− can accept four protons; in that case, all p''K''a values must be known. In addition, the metal ion is subject to
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
, that is, it behaves as a weak acid, so the p''K'' values for the hydrolysis reactions must also be known. Assessing the hazard associated with an acid or base may require a knowledge of p''K''a values. For example,
hydrogen cyanide Hydrogen cyanide (formerly known as prussic acid) is a chemical compound with the chemical formula, formula HCN and structural formula . It is a highly toxic and flammable liquid that boiling, boils slightly above room temperature, at . HCN is ...
is a very toxic gas, because the cyanide ion inhibits the iron-containing enzyme
cytochrome c oxidase The enzyme cytochrome c oxidase or Complex IV (was , now reclassified as a translocasEC 7.1.1.9 is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes. It is the last enzyme in the Cellular respir ...
. Hydrogen cyanide is a weak acid in aqueous solution with a p''K''a of about 9. In strongly alkaline solutions, above pH 11, say, it follows that sodium cyanide is "fully dissociated" so the hazard due to the hydrogen cyanide gas is much reduced. An acidic solution, on the other hand, is very hazardous because all the cyanide is in its acid form. Ingestion of cyanide by mouth is potentially fatal, independently of pH, because of the reaction with cytochrome c oxidase. In environmental science acid–base equilibria are important for lakes and rivers; for example,
humic acid Humic substances (HS) are colored relatively recalcitrant organic compounds naturally formed during long-term decomposition and transformation of biomass residues. The color of humic substances varies from bright yellow to light or dark brown lead ...
s are important components of natural waters. Another example occurs in chemical oceanography: in order to quantify the solubility of iron(III) in seawater at various salinities, the p''K''a values for the formation of the iron(III) hydrolysis products , and were determined, along with the solubility product of iron hydroxide.


Values for common substances

There are multiple techniques to determine the p''K''a of a chemical, leading to some discrepancies between different sources. Well measured values are typically within 0.1 units of each other. Data presented here were taken at 25 °C in water. Chapter 8 More values can be found in the
Thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
section, above. A table of p''K''a of carbon acids, measured in DMSO, can be found on the page on carbanions.


See also

* Acidosis * Acids in wine: tartaric, malic and citric are the principal acids in wine. * Alkalosis * Arterial blood gas *
Chemical equilibrium In a chemical reaction, chemical equilibrium is the state in which both the Reagent, reactants and Product (chemistry), products are present in concentrations which have no further tendency to change with time, so that there is no observable chan ...
* Conductivity (electrolytic) * Grotthuss mechanism: how protons are transferred between hydronium ions and water molecules, accounting for the exceptionally high ionic mobility of the proton (animation). * Hammett acidity function: a measure of acidity that is used for very concentrated solutions of strong acids, including superacids. * Ion transport number *
Ocean acidification Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ...
: dissolution of atmospheric carbon dioxide affects seawater pH. The reaction depends on total inorganic carbon and on solubility equilibria with solid carbonates such as
limestone Limestone is a type of carbonate rock, carbonate sedimentary rock which is the main source of the material Lime (material), lime. It is composed mostly of the minerals calcite and aragonite, which are different Polymorphism (materials science) ...
and dolomite. * Law of dilution * pCO2 * pH * Predominance diagram: relates to equilibria involving polyoxyanions. p''K''a values are needed to construct these diagrams. *
Proton affinity The proton affinity (PA, ''E''pa) of an anion or of a neutral atom or molecule is the negative of the enthalpy change in the reaction between the chemical species concerned and a proton in the gas phase: ::: A- + H+ -> HA ::: B + H+ -> BH+ ...
: a measure of basicity in the gas phase. *
Stability constants of complexes In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents tha ...
: formation of a complex can often be seen as a competition between proton and metal ion for a ligand, which is the product of dissociation of an acid.


Notes


References


Further reading

* (Previous edition published as ) * * (Non-aqueous solvents) * (translation editor: Mary R. Masson) * * Chapter 4: Solvent Effects on the Position of Homogeneous Chemical Equilibria. *


External links


Acidity–Basicity Data in Nonaqueous Solvents
Extensive bibliography of p''K''a values in DMSO,
acetonitrile Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not class ...
, THF,
heptane Heptane or ''n''-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 poi ...
, 1,2-dichloroethane, and in the gas phase
Curtipot
All-in-one freeware for pH and acid–base equilibrium calculations and for simulation and analysis of potentiometric titration curves with spreadsheets
SPARC Physical/Chemical property calculator
Includes a database with aqueous, non-aqueous, and gaseous phase p''K''a values than can be searched using SMILES or CAS registry numbers
Aqueous-Equilibrium Constants
p''K''a values for various acid and bases. Includes a table of some solubility products

Explanations of the relevance of these properties to
pharmacology Pharmacology is the science of drugs and medications, including a substance's origin, composition, pharmacokinetics, pharmacodynamics, therapeutic use, and toxicology. More specifically, it is the study of the interactions that occur betwee ...

Free online prediction tool (Marvin)
p''K''a, log ''p'', log ''d'' etc. From ChemAxon * Chemicalize.org: List of predicted structure based properties * p''K''a Char

by David A. Evans {{Chemical solutions Equilibrium chemistry Acids Bases (chemistry) Analytical chemistry Physical chemistry