HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ' ...
, a branch of mathematics, an Archimedean group is a
linearly ordered group In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group ''G'' equipped with a total order "≤" that is ''translation-invariant''. This may have different meanings. We say that (''G'', ≤) is a: * le ...
for which the
Archimedean property In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
holds: every two positive group elements are bounded by
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language o ...
multiples of each other. The set R of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every r ...
s together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of
Otto Hölder Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christ ...
, every Archimedean group is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to a
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
of this group. The name "Archimedean" comes from
Otto Stolz Otto Stolz (3 July 1842 – 23 November 1905) was an Austrian mathematician noted for his work on mathematical analysis and infinitesimals. Born in Hall in Tirol, he studied in Innsbruck from 1860 and in Vienna from 1863, receiving his habilitati ...
, who named the Archimedean property after its appearance in the works of
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists i ...
.


Definition

An
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structure ...
consists of a set of elements, an
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
addition operation that combines pairs of elements and returns a single element, an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures ...
(or zero element) whose sum with any other element is the other element, and an
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
operation such that the sum of any element and its inverse is zero. A group is a
linearly ordered group In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group ''G'' equipped with a total order "≤" that is ''translation-invariant''. This may have different meanings. We say that (''G'', ≤) is a: * le ...
when, in addition, its elements can be
linearly ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexiv ...
in a way that is compatible with the group operation: for all elements ''x'', ''y'', and ''z'', if ''x'' ≤ ''y'' then ''x'' + ''z'' ≤ ''y'' + ''z'' and ''z'' + ''x'' ≤ ''z'' + ''y''. The notation ''na'' (where ''n'' is a
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
) stands for the group sum of ''n'' copies of ''a''. An Archimedean group (''G'', +, ≤) is a linearly ordered group subject to the following additional condition, the Archimedean property: For every ''a'' and ''b'' in ''G'' which are greater than 0, it is possible to find a natural number ''n'' for which the inequality ''b'' ≤ ''na'' holds. An equivalent definition is that an Archimedean group is a linearly ordered group without any bounded cyclic
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
s: there does not exist a cyclic subgroup ''S'' and an element ''x'' with ''x'' greater than all elements in ''S''. It is straightforward to see that this is equivalent to the other definition: the Archimedean property for a pair of elements ''a'' and ''b'' is just the statement that the cyclic subgroup generated by ''a'' is not bounded by ''b''.


Examples of Archimedean groups

The sets of the integers, the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ratio ...
s, and the real numbers, together with the operation of addition and the usual ordering (≤), are Archimedean groups. Every subgroup of an Archimedean group is itself Archimedean, so it follows that every subgroup of these groups, such as the additive group of the
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 ...
s or of the
dyadic rational In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in compute ...
s, also forms an Archimedean group. Conversely, as
Otto Hölder Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christ ...
showed, every Archimedean group is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
(as an ordered group) to a
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
of the real numbers. It follows from this that every Archimedean group is necessarily an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
: its addition operation must be commutative.


Examples of non-Archimedean groups

Groups that cannot be linearly ordered, such as the
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
s, are not Archimedean. For another example, see the ''p''-adic numbers, a system of numbers generalizing the rational numbers in a different way to the real numbers. Non-Archimedean ordered groups also exist; the ordered group (''G'', +, ≤) defined as follows is not Archimedean. Let the elements of ''G'' be the points of the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
, given by their
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s: pairs (''x'', ''y'') of real numbers. Let the group addition operation be
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
(vector) addition, and order these points in
lexicographic order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of ...
: if ''a'' = (''u'', ''v'') and ''b'' = (''x'', ''y''), then ''a'' + ''b'' = (''u'' + ''x'', ''v'' + ''y''), and ''a'' ≤ ''b'' exactly when either ''v'' < ''y'' or ''v'' = ''y'' and ''u'' ≤ ''x''. Then this gives an ordered group, but one that is not Archimedean. To see this, consider the elements (1, 0) and (0, 1), both of which are greater than the zero element of the group (the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
). For every natural number ''n'', it follows from these definitions that ''n'' (1, 0) = (''n'', 0) < (0, 1), so there is no ''n'' that satisfies the Archimedean property. This group can be thought of as the additive group of pairs of a real number and an
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally ref ...
, (x, y) = x \epsilon + y, where \epsilon is a unit infinitesimal: \epsilon > 0 but \epsilon < y for any positive real number y > 0.
Non-Archimedean ordered field In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational function ...
s can be defined similarly, and their additive groups are non-Archimedean ordered groups. These are used in
non-standard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta p ...
, and include the
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains number ...
s and
surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals ...
s. While non-Archimedean ordered groups cannot be embedded in the real numbers, they can be embedded in a power of the real numbers, with lexicographic order, by the
Hahn embedding theorem In mathematics, especially in the area of abstract algebra dealing with ordered structures on abelian groups, the Hahn embedding theorem gives a simple description of all linearly ordered abelian groups. It is named after Hans Hahn. Overview Th ...
; the example above is the 2-dimensional case.


Additional properties

Every Archimedean group has the property that, for every
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the r ...
of the group, and every group element ε > 0, there exists another group element ''x'' with ''x'' on the lower side of the cut and ''x'' + ε on the upper side of the cut. However, there exist non-Archimedean ordered groups with the same property. The fact that Archimedean groups are abelian can be generalized: every ordered group with this property is abelian.. Translated into English in .


Generalisations

Archimedean groups can be generalised to Archimedean monoids,
linearly ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexiv ...
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids a ...
s that obey the
Archimedean property In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
. Examples include the natural numbers, the non-negative rational numbers, and the non-negative real numbers, with the usual
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
+ and order <. Through a similar
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
as for Archimedean groups, Archimedean monoids can be shown to be commutative.


See also

* Archimedean equivalence


References

{{DEFAULTSORT:Archimedean Group Ordered groups