HOME

TheInfoList



OR:

The anomalous photovoltaic effect (APE), also called the bulk photovoltaic effect in certain cases, is a type of a
photovoltaic effect The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical and chemical phenomenon. The photovoltaic effect is closely related to the photoelectric effect. For both phenomena, ...
which occurs in certain
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
s and insulators. The "anomalous" refers to those cases where the photovoltage (i.e., the open-circuit voltage caused by the light) is larger than the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
of the corresponding
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
. In some cases, the voltage may reach thousands of volts. Although the voltage is unusually high, the short-circuit current is unusually low. Overall, materials that exhibit the anomalous photovoltaic effect have very low power generation efficiencies, and are never used in practical power-generation systems. There are several situations in which APE can arise. First, in polycrystalline materials, each microscopic grain can act as a photovoltaic. Then the grains add in series, so that the overall open-circuit voltage across the sample is large, potentially much larger than the bandgap. Second, in a similar manner, certain
ferroelectric Ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoelectric and pyroelectric, with the ad ...
materials can develop stripes consisting of parallel ferroelectric domains, where each domain acts like a photovoltaic and each domain wall acts like a contact connecting the adjacent
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
(or vice versa). Again, domains add in series, so that the overall open-circuit voltage is large. Third, a perfect single crystal with a non-centrosymmetric structure can develop a giant photovoltage. This is specifically called the bulk photovoltaic effect, and occurs because of non-centrosymmetry. Specifically, the electron processes—photo-excitation, scattering, and relaxation—occur with different probabilities for electron motion in one direction versus the opposite direction.


Series-sum of grains in a polycrystal


History

This effect was discovered by Starkiewicz et al. in 1946 on PbS films and was later observed on other semiconducting
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
films including CdTe,
Silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
,H. Kallmann, B. Kramer, E. Haidenmanakis, W. J. McAleer, H. Barkemeyer, and P. I. Pollak, J. Electrochem. Soc. 108, 247 (1961).
Germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
,
ZnTe Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and di ...
and
InP Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic (" zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors. Manufacturing Indium phosphide c ...
, as well as on
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films ont ...
films and in
nanocrystalline A nanocrystalline (NC) material is a polycrystalline material with a crystallite size of only a few nanometers. These materials fill the gap between amorphous materials without any long range order and conventional coarse-grained materials. Defi ...
silicon systems. Observed photovoltages were found to reach hundreds, and in some cases even thousands of volts. The films in which this effect was observed were generally thin semiconducting films that were deposited by vacuum
evaporation Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when h ...
onto a heated insulating substrate, held at an angle with respect to the direction of the incident vapor. However, the photovoltage was found to be very sensitive to the conditions and procedure at which the samples were prepared. This made it difficult to get reproducible results which is probably the reason why no satisfactory model for it has been accepted thus far. Several models were, however, suggested to account for the extraordinary phenomenon and they are briefly outlined below. The oblique deposition can lead to several structure asymmetries in the films. Among the first attempts to explain the APE were few that treated the film as a single entity, such as considering the variation of sample thickness along its length or a non-uniform distribution of electron traps. However, studies that followed generally supported models that explain the effect as resulting from a series of microelements contributing additively to the net photovoltage. The more popular models used to explain the photovoltage are reviewed below.


The Photo–Dember effect

When photogenerated electrons and holes have different
mobilities Mobilities is a contemporary paradigm in the social sciences that explores the movement of people (human migration, individual mobility, travel, transport), ideas (see e.g. meme) and things (transport), as well as the broader social implications of ...
, a potential difference can be created between the illuminated and non-illuminated faces of a semiconductor slab. Generally this potential is created through the depth of the slab, whether it is a bulk semiconductor or a polycrystalline film. The difference between these cases is that in the latter, a photovoltage can be created in each one of the microcrystallites. As was mentioned above, in the oblique deposition process inclined crystallites are formed in which one face can absorb light more than the other. This may cause a photovoltage to be generated along the film, as well as through its depth. The transfer of carriers at the surface of crystallites is assumed to be hindered by the presence of some unspecified layer with different properties, thus cancellation of consecutive Dember voltages is being prevented. To explain the polarity of the PV which is independent of the illumination direction one must assume that there exists a large difference in recombination rates at opposite faces of a crystallite, which is a weakness of this model.


The structure transition model

This model suggests that when a material
crystallizes Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely de ...
both in cubic and
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
structures, an asymmetric barrier can be formed by a residual
dipole In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways: *An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system ...
layer at the interface between the two structures. A potential barrier is formed due to a combination of the band gap difference and the electric fields produced at the interface. One should remember that this model can be invoked to explain anomalous PV effect only in those materials that can demonstrate two types of crystal structure.


The p-n junction model

It was suggested by Starkiewicz that the anomalous PV is developed due to a distribution gradient of positive and negative
impurity ions In chemistry and materials science, impurities are chemical substances inside a confined amount of liquid, gas, or solid, which differ from the chemical composition of the material or compound. Firstly, a pure chemical should appear thermodyna ...
through the microcrystallites, with an orientation such as to give a non-zero total photovoltage. This is equivalent to an array of p-n junctions. However, the mechanism by which such p-n junctions may be formed was not explained.


The surface photovoltage model

The interface between crystallites may contain traps for charge carriers. This may lead to a
surface charge Surface charge is a two-dimensional surface with non-zero electric charge. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge di ...
and an opposite
space charge Space charge is an interpretation of a collection of electric charges in which excess electric charge is treated as a continuum of charge distributed over a region of space (either a volume or an area) rather than distinct point-like charges. Thi ...
region in the crystallites, in case that the crystallites are small enough. Under illumination of the inclined crystallites
electron-hole In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle which is the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom ...
pairs are generated and cause a compensation of the charge in the surface and within the crystallites. If it is assumed that the optical absorption depth is much less than the space charge region in the crystallites, then, because of their inclined shape more light is absorbed in one side than in the other. Thus a difference in the reduction of the charge is created between the two sides. This way a photovoltage parallel to the surface is developed in each crystallite.


Bulk photovoltaic effect in a non-centrosymmetric single crystal

A perfect single crystal with a non-centrosymmetric structure can develop a giant photovoltage. This is specifically called the bulk photovoltaic effect, and occurs because of non-centrosymmetry. The electron processes like photo-excitation, scattering, and relaxation may occur with different probabilities for electrons moving one direction versus the opposite direction. This effect was first discovered in the 1960s. It has been observed in
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
(LiNbO3),
barium titanate Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material ...
(BaTiO3) and many other materials. Theoretical calculations using
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
or other methods can predict the extent to which a material will exhibit the bulk photovoltaic effect.


Simple example

Shown at right is an example of a simple system that would exhibit the bulk photovoltaic effect. There are two electronic levels per unit cell, separated by a large energy gap, say 3 eV. The blue arrows indicate radiative transitions, i.e. an electron can absorb a UV photon to go from A to B, or it can emit a UV photon to go from B to A. The purple arrows indicate nonradiative transitions, i.e. an electron can go from B to C by emitting many phonons, or can go from C to B by absorbing many phonons. When light is shining, an electron will occasionally move right by absorbing a photon and going from A to B to C. However, it will almost never move in the reverse direction, C to B to A, because the transition from C to B cannot be excited by photons, but instead requires an improbably large thermal fluctuation. Therefore, there is a net rightward photocurrent. Because the electrons undergo a "shift" each time they absorb a photon (on average), this photocurrent is sometimes called a "shift current".


Distinguishing features

There are several aspects of the bulk photovoltaic effect that distinguish it from other kinds of effects: In the power-generating region of the I-V curve (between open-circuit and short-circuit), electrons are moving in the ''opposite direction'' that you would expect from the drift-diffusion equation, i.e. electrons are moving towards higher fermi level or holes are moving towards lower fermi level. This is unusual: For example, in a normal silicon solar cell, electrons move in the direction of decreasing electron-quasi-fermi level, and holes move in the direction of increasing hole-quasi-fermi-level, consistent with the drift-diffusion equation. Power generation is possible ''only'' because the quasi-fermi-levels are split. A bulk photovoltaic, by contrast, can generate power without any splitting of quasi-fermi-levels. This also explains why large open-circuit voltages tend to be seen only in crystals that (in the dark) have very low conductivity: Any electrons that can freely move through the crystal (i.e., not requiring photons to move) will follow the drift-diffusion equation, which means that these electrons will ''subtract'' from the photocurrent and reduce the photovoltaic effect. Each time one electron absorbs one photon (in the power-generating region of the I-V curve), the resulting electron displacement is, on average, ''at most'' one or two unit cells or mean-free-paths (this displacement is sometimes called the "anisotropy distance"). This is required because if an electron is excited into a mobile, delocalized state, and then it scatters a few times, then its direction is now randomized and it will naturally start following the drift-diffusion equation. However, in the bulk photovoltaic effect, the desired net electron motion is ''opposite'' the direction predicted by the drift-diffusion equation. For example, it might be the case that when an electron absorbs a photon, it is disproportionately likely to wind up in a state where it is moving leftward. And perhaps each time a photon excites an electron, the electron moves leftward a bit and then immediately relaxes into ("gets stuck in") an immobile state—until it absorbs another photon and the cycle repeats. In this situation, a leftward electron current is possible ''despite'' an electric field pushing electrons in the opposite direction. However, when a photon excites an electron, it does ''not'' quickly relax back to an immobile state, but instead keeps moving around the crystal and scattering randomly, then the electron will eventually "forget" that it was moving left, and it will wind up being pulled rightward by the electric field. Again, the total leftward motion of an electron, per photon absorbed, cannot be much larger than the mean free path. A consequence is that the quantum efficiency of a thick device is extremely low. It may require millions of photons to bring a single electron from one electrode to the other. As thickness increases, the current goes down as much as the voltage goes up. In some cases, the current has different signs depending on the light polarization. This would not occur in an ordinary solar cell like silicon.


Applications

The bulk photovoltaic effect is believed to play a role in the
photorefractive effect The photorefractive effect is a nonlinear optical effect seen in certain crystals and other materials that respond to light by altering their refractive index. The effect can be used to store temporary, erasable holograms and is useful for holog ...
in
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
.


See also

*
Semiconductors A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
*
Photovoltaic effect The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical and chemical phenomenon. The photovoltaic effect is closely related to the photoelectric effect. For both phenomena, ...
*
Virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturba ...


References

{{reflist Semiconductors Energy conversion