HOME

TheInfoList



OR:

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
. In amplitude modulation, the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
(signal strength) of the wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of the carrier wave is varied, as in
frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
, or its phase, as in phase modulation. AM was the earliest modulation method used for transmitting audio in radio broadcasting. It was developed during the first quarter of the 20th century beginning with Roberto Landell de Moura and Reginald Fessenden's radiotelephone experiments in 1900. This original form of AM is sometimes called double-sideband amplitude modulation (DSBAM), because the standard method produces sidebands on either side of the carrier frequency. Single-sideband modulation uses bandpass filters to eliminate one of the sidebands and possibly the carrier signal, which improves the ratio of message power to total transmission power, reduces power handling requirements of line repeaters, and permits better bandwidth utilization of the transmission medium. AM remains in use in many forms of communication in addition to
AM broadcasting AM broadcasting is radio broadcasting using amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave (also known as "AM band") trans ...
:
shortwave radio Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 m ...
,
amateur radio Amateur radio, also known as ham radio, is the use of the radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency commu ...
, two-way radios, VHF aircraft radio, citizens band radio, and in computer
modem A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more c ...
s in the form of QAM.


Forms

In
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
,
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that ...
s and
mechanic A mechanic is an artisan, skilled tradesperson, or technician who uses tools to build, maintain, or repair machinery, especially cars. Duties Most mechanics specialize in a particular field, such as auto body mechanics, air conditioning an ...
s, modulation means varying some aspect of a
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
carrier signal with an information-bearing modulation waveform, such as an audio signal which represents sound, or a video signal which represents images. In this sense, the carrier wave, which has a much higher frequency than the message signal, ''carries'' the information. At the receiving station, the message signal is extracted from the modulated carrier by
demodulation Demodulation is extracting the original information-bearing signal from a carrier wave. A demodulator is an electronic circuit (or computer program in a software-defined radio) that is used to recover the information content from the modulate ...
. In amplitude modulation, the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
or ''strength'' of the radio frequency oscillations is varied. For example, in AM radio communication, a continuous wave radio-frequency signal has its amplitude modulated by an audio waveform before transmission. The audio waveform modifies the amplitude of the radio wave and determines the ''
envelope An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter or card. Traditional envelopes are made from sheets of paper cut to one of three shapes: a rhombus, a ...
'' of the waveform. In the frequency domain, amplitude modulation produces a signal with power concentrated at the carrier frequency and two adjacent
sideband In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands ...
s. Each sideband is equal in bandwidth to that of the modulating signal, and is a mirror image of the other. Standard AM is thus sometimes called "double-sideband amplitude modulation" (DSBAM). A disadvantage of all amplitude modulation techniques, not only standard AM, is that the receiver amplifies and detects
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference aris ...
and electromagnetic interference in equal proportion to the signal. Increasing the received signal-to-noise ratio, say, by a factor of 10 (a 10 decibel improvement), thus would require increasing the transmitter power by a factor of 10. This is in contrast to
frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
(FM) and digital radio where the effect of such noise following demodulation is strongly reduced so long as the received signal is well above the threshold for reception. For this reason AM broadcast is not favored for music and high fidelity broadcasting, but rather for voice communications and broadcasts (sports, news,
talk radio Talk radio is a radio format containing discussion about topical issues and consisting entirely or almost entirely of original spoken word content rather than outside music. Most shows are regularly hosted by a single individual, and often featu ...
etc.). AM is also inefficient in power usage; at least two-thirds of the power is concentrated in the carrier signal. The carrier signal contains none of the original information being transmitted (voice, video, data, etc.). However its presence provides a simple means of demodulation using envelope detection, providing a frequency and phase reference to extract the modulation from the sidebands. In some modulation systems based on AM, a lower transmitter power is required through partial or total elimination of the carrier component, however receivers for these signals are more complex because they must provide a precise carrier frequency reference signal (usually as shifted to the
intermediate frequency In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier sig ...
) from a greatly reduced "pilot" carrier (in
reduced-carrier transmission Reduced-carrier transmission is an amplitude modulation (AM) transmission in which the carrier signal level is reduced to reduce wasted electrical power. Suppressed-carrier transmission is a special case in which the carrier level is reduced bel ...
or DSB-RC) to use in the demodulation process. Even with the carrier totally eliminated in double-sideband suppressed-carrier transmission, carrier regeneration is possible using a Costas phase-locked loop. This does not work for single-sideband suppressed-carrier transmission (SSB-SC), leading to the characteristic "Donald Duck" sound from such receivers when slightly detuned. Single-sideband AM is nevertheless used widely in
amateur radio Amateur radio, also known as ham radio, is the use of the radio frequency spectrum for purposes of non-commercial exchange of messages, wireless experimentation, self-training, private recreation, radiosport, contesting, and emergency commu ...
and other voice communications because it has power and bandwidth efficiency (cutting the RF bandwidth in half compared to standard AM). On the other hand, in
medium wave Medium wave (MW) is the part of the medium frequency (MF) radio band used mainly for AM radio broadcasting. The spectrum provides about 120 channels with more limited sound quality than FM stations on the FM broadcast band. During the dayti ...
and short wave broadcasting, standard AM with the full carrier allows for reception using inexpensive receivers. The broadcaster absorbs the extra power cost to greatly increase potential audience. An additional function provided by the carrier in standard AM, but which is lost in either single or double-sideband suppressed-carrier transmission, is that it provides an amplitude reference. In the receiver, the automatic gain control (AGC) responds to the carrier so that the reproduced audio level stays in a fixed proportion to the original modulation. On the other hand, with suppressed-carrier transmissions there is ''no'' transmitted power during pauses in the modulation, so the AGC must respond to peaks of the transmitted power during peaks in the modulation. This typically involves a so-called ''fast attack, slow decay'' circuit which holds the AGC level for a second or more following such peaks, in between syllables or short pauses in the program. This is very acceptable for communications radios, where compression of the audio aids intelligibility. However it is absolutely undesired for music or normal broadcast programming, where a faithful reproduction of the original program, including its varying modulation levels, is expected. A simple form of amplitude modulation is the transmission of speech signals from the traditional analog telephone set using a common battery local loop. The direct current provided by the central office battery is a carrier with a frequency of 0 Hz, that is modulated by a microphone (''transmitter'') in the telephone set according to the acoustic signal from the mouth of the speaker. The result is a varying amplitude direct current, whose AC-component is the speech signal extracted at the central office for transmission to another subscriber. A simple form of digital amplitude modulation which can be used for transmitting binary data is on-off keying, the simplest form of '' amplitude-shift keying'', in which ones and zeros are represented by the presence or absence of a carrier. On-off keying is likewise used by radio amateurs to transmit
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
where it is known as continuous wave (CW) operation, even though the transmission is not strictly "continuous." A more complex form of AM, quadrature amplitude modulation is now more commonly used with digital data, while making more efficient use of the available bandwidth.


ITU designations

In 1982, the
International Telecommunication Union The International Telecommunication Union is a specialized agency of the United Nations responsible for many matters related to information and communication technologies. It was established on 17 May 1865 as the International Telegraph Unio ...
(ITU) designated the types of amplitude modulation:


History

Although AM was used in a few crude experiments in multiplex telegraph and telephone transmission in the late 1800s, the practical development of amplitude modulation is synonymous with the development between 1900 and 1920 of " radiotelephone" transmission, that is, the effort to send sound (audio) by radio waves. The first radio transmitters, called spark gap transmitters, transmitted information by wireless telegraphy, using different length pulses of carrier wave to spell out text messages in
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
. They couldn't transmit audio because the carrier consisted of strings of damped waves, pulses of radio waves that declined to zero, that sounded like a buzz in receivers. In effect they were already amplitude modulated.


Continuous waves

The first AM transmission was made by Canadian researcher Reginald Fessenden on 23 December 1900 using a spark gap transmitter with a specially designed high frequency 10 kHz interrupter, over a distance of 1 mile (1.6 km) at Cobb Island, Maryland, US. His first transmitted words were, "Hello. One, two, three, four. Is it snowing where you are, Mr. Thiessen?". The words were barely intelligible above the background buzz of the spark. Fessenden was a significant figure in the development of AM radio. He was one of the first researchers to realize, from experiments like the above, that the existing technology for producing radio waves, the spark transmitter, was not usable for amplitude modulation, and that a new kind of transmitter, one that produced
sinusoidal A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the '' sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often i ...
''
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
s'', was needed. This was a radical idea at the time, because experts believed the impulsive spark was necessary to produce radio frequency waves, and Fessenden was ridiculed. He invented and helped develop one of the first continuous wave transmitters - the Alexanderson alternator, with which he made what is considered the first AM public entertainment broadcast on Christmas Eve, 1906. He also discovered the principle on which AM is based, heterodyning, and invented one of the first detectors able to
rectify ''Rectify'' is an American television drama series exploring the life of a man after he is released from prison after nearly 20 years on death row following a wrongful conviction. It was created by Ray McKinnon and is the first original series f ...
and receive AM, the electrolytic detector or "liquid baretter", in 1902. Other radio detectors invented for wireless telegraphy, such as the Fleming valve (1904) and the
crystal detector A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (dem ...
(1906) also proved able to rectify AM signals, so the technological hurdle was generating AM waves; receiving them was not a problem.


Early technologies

Early experiments in AM radio transmission, conducted by Fessenden,
Valdemar Poulsen Valdemar Poulsen (23 November 1869 – 23 July 1942) was a Danish engineer who made significant contributions to early radio technology. He developed a magnetic wire recorder called the telegraphone in 1898 and the first continuous wave rad ...
, Ernst Ruhmer, Quirino Majorana, Charles Herrold, and Lee de Forest, were hampered by the lack of a technology for amplification. The first practical continuous wave AM
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s were based on either the huge, expensive Alexanderson alternator, developed 1906–1910, or versions of the
Poulsen arc The arc converter, sometimes called the arc transmitter, or Poulsen arc after Danish engineer Valdemar Poulsen who invented it in 1903, was a variety of spark transmitter used in early wireless telegraphy. The arc converter used an electric arc t ...
transmitter (arc converter), invented in 1903. The modifications necessary to transmit AM were clumsy and resulted in very low quality audio. Modulation was usually accomplished by a carbon
microphone A microphone, colloquially called a mic or mike (), is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and publ ...
inserted directly in the antenna or ground wire; its varying resistance varied the current to the antenna. The limited power handling ability of the microphone severely limited the power of the first radiotelephones; many of the microphones were water-cooled.


Vacuum tubes

The 1912 discovery of the amplifying ability of the
Audion tube The Audion was an electronic detecting or amplifying vacuum tube invented by American electrical engineer Lee de Forest in 1906.De Forest patented a number of variations of his detector tubes starting in 1906. The patent that most clearly cover ...
, invented in 1906 by Lee de Forest, solved these problems. The vacuum tube feedback oscillator, invented in 1912 by Edwin Armstrong and
Alexander Meissner Alexander Meissner (in German: Alexander Meißner) (September 14, 1883 – January 3, 1958) was an Austrian engineer and physicist. He was born in Vienna and died in Berlin. His field of interest was: antenna design, amplification and detectio ...
, was a cheap source of
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or partic ...
s and could be easily modulated to make an AM transmitter. Modulation did not have to be done at the output but could be applied to the signal before the final amplifier tube, so the microphone or other audio source didn't have to modulate a high-power radio signal. Wartime research greatly advanced the art of AM modulation, and after the war the availability of cheap tubes sparked a great increase in the number of radio stations experimenting with AM transmission of news or music. The vacuum tube was responsible for the rise of
AM broadcasting AM broadcasting is radio broadcasting using amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave (also known as "AM band") trans ...
around 1920, the first electronic
mass communication Mass communication is the process of imparting and exchanging information through mass media to large segments of the population. It is usually understood for relating to various forms of media, as its technologies are used for the dissemination o ...
medium. Amplitude modulation was virtually the only type used for
radio broadcasting Radio broadcasting is transmission of audio (sound), sometimes with related metadata, by radio waves to radio receivers belonging to a public audience. In terrestrial radio broadcasting the radio waves are broadcast by a land-based radio ...
until
FM broadcasting FM broadcasting is a method of radio broadcasting using frequency modulation (FM). Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to provide high fidelity sound over broadcast radio. FM broadcasting is capab ...
began after World War II. At the same time as AM radio began,
telephone companies A telephone company, also known as a telco, telephone service provider, or telecommunications operator, is a kind of communications service provider (CSP), more precisely a telecommunications service provider (TSP), that provides telecommunicat ...
such as
AT&T AT&T Inc. is an American multinational telecommunications holding company headquartered at Whitacre Tower in Downtown Dallas, Texas. It is the world's largest telecommunications company by revenue and the third largest provider of mobile ...
were developing the other large application for AM: sending multiple telephone calls through a single wire by modulating them on separate
carrier Carrier may refer to: Entertainment * ''Carrier'' (album), a 2013 album by The Dodos * ''Carrier'' (board game), a South Pacific World War II board game * ''Carrier'' (TV series), a ten-part documentary miniseries that aired on PBS in April 20 ...
frequencies, called '' frequency division multiplexing''.


Single-sideband

John Renshaw Carson in 1915 did the first mathematical analysis of amplitude modulation, showing that a signal and carrier frequency combined in a nonlinear device would create two sidebands on either side of the carrier frequency, and passing the modulated signal through another nonlinear device would extract the original baseband signal. His analysis also showed only one sideband was necessary to transmit the audio signal, and Carson patented single-sideband modulation (SSB) on 1 December 1915. This more advanced variant of amplitude modulation was adopted by AT&T for longwave transatlantic telephone service beginning 7 January 1927. After WW2 it was developed by the military for aircraft communication.


Analysis

The carrier wave ( sine wave) of frequency ''fc'' and amplitude ''A'' is expressed by :c(t) = A \sin(2 \pi f_c t)\,. The message signal, such as an audio signal that is used for modulating the carrier, is ''m''(''t''), and has a frequency ''fm'', much lower than ''fc'': :m(t) = M \cos\left(2\pi f_m t + \phi\right)= Am \cos\left(2\pi f_m t + \phi\right)\,, where ''m'' is the amplitude sensitivity, ''M'' is the amplitude of modulation. If ''m'' < 1, ''(1 + m(t)/A)'' is always positive for undermodulation. If ''m'' > 1 then overmodulation occurs and reconstruction of message signal from the transmitted signal would lead in loss of original signal. Amplitude modulation results when the carrier ''c(t)'' is multiplied by the positive quantity ''(1 + m(t)/A)'': :\begin y(t) &= \left + \frac\rightc(t) \\ &= \left + m \cos\left(2\pi f_m t + \phi\right)\rightA \sin\left(2\pi f_c t\right) \end In this simple case ''m'' is identical to the modulation index, discussed below. With ''m'' = 0.5 the amplitude modulated signal ''y''(''t'') thus corresponds to the top graph (labelled "50% Modulation") in figure 4. Using prosthaphaeresis identities, ''y''(''t'') can be shown to be the sum of three sine waves: :y(t) = A \sin(2\pi f_c t) + \fracAm\left sin\left(2\pi_\left[f_c_+_f_m\rightt_+_\phi\right)_+__\sin\left(2\pi_\left[f_c_-_f_m\right.html" ;"title="_c_+_f_m\right.html" ;"title="sin\left(2\pi \left[f_c + f_m\right">sin\left(2\pi \left[f_c + f_m\rightt + \phi\right) + \sin\left(2\pi \left[f_c - f_m\right">_c_+_f_m\right.html" ;"title="sin\left(2\pi \left[f_c + f_m\right">sin\left(2\pi \left[f_c + f_m\rightt + \phi\right) + \sin\left(2\pi \left[f_c - f_m\rightt - \phi\right)\right].\, Therefore, the modulated signal has three components: the carrier wave ''c(t)'' which is unchanged in frequency, and two
sideband In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands ...
s with frequencies slightly above and below the carrier frequency ''fc''.


Spectrum

A useful modulation signal ''m(t)'' is usually more complex than a single sine wave, as treated above. However, by the principle of
Fourier decomposition A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
, ''m(t)'' can be expressed as the sum of a set of sine waves of various frequencies, amplitudes, and phases. Carrying out the multiplication of ''1 + m(t)'' with ''c(t)'' as above, the result consists of a sum of sine waves. Again, the carrier ''c(t)'' is present unchanged, but each frequency component of ''m'' at ''fi'' has two sidebands at frequencies ''fc + fi'' and ''fc - fi''. The collection of the former frequencies above the carrier frequency is known as the upper sideband, and those below constitute the lower sideband. The modulation ''m(t)'' may be considered to consist of an equal mix of positive and negative frequency components, as shown in the top of figure 2. One can view the sidebands as that modulation ''m(t)'' having simply been shifted in frequency by ''fc'' as depicted at the bottom right of figure 2. The short-term spectrum of modulation, changing as it would for a human voice for instance, the frequency content (horizontal axis) may be plotted as a function of time (vertical axis), as in figure 3. It can again be seen that as the modulation frequency content varies, an upper sideband is generated according to those frequencies shifted ''above'' the carrier frequency, and the same content mirror-imaged in the lower sideband below the carrier frequency. At all times, the carrier itself remains constant, and of greater power than the total sideband power.


Power and spectrum efficiency

The RF bandwidth of an AM transmission (refer to figure 2, but only considering positive frequencies) is twice the bandwidth of the modulating (or "
baseband In telecommunications and signal processing, baseband is the range of frequencies occupied by a signal that has not been modulated to higher frequencies. Baseband signals typically originate from transducers, converting some other variable i ...
") signal, since the upper and lower sidebands around the carrier frequency each have a bandwidth as wide as the highest modulating frequency. Although the bandwidth of an AM signal is narrower than one using
frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
(FM), it is twice as wide as
single-sideband In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modul ...
techniques; it thus may be viewed as spectrally inefficient. Within a frequency band, only half as many transmissions (or "channels") can thus be accommodated. For this reason analog television employs a variant of single-sideband (known as
vestigial sideband In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modul ...
, somewhat of a compromise in terms of bandwidth) in order to reduce the required channel spacing. Another improvement over standard AM is obtained through reduction or suppression of the carrier component of the modulated spectrum. In figure 2 this is the spike in between the sidebands; even with full (100%) sine wave modulation, the power in the carrier component is twice that in the sidebands, yet it carries no unique information. Thus there is a great advantage in efficiency in reducing or totally suppressing the carrier, either in conjunction with elimination of one sideband ( single-sideband suppressed-carrier transmission) or with both sidebands remaining (
double sideband suppressed carrier Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest pra ...
). While these suppressed carrier transmissions are efficient in terms of transmitter power, they require more sophisticated receivers employing synchronous detection and regeneration of the carrier frequency. For that reason, standard AM continues to be widely used, especially in broadcast transmission, to allow for the use of inexpensive receivers using envelope detection. Even (analog) television, with a (largely) suppressed lower sideband, includes sufficient carrier power for use of envelope detection. But for communications systems where both transmitters and receivers can be optimized, suppression of both one sideband and the carrier represent a net advantage and are frequently employed. A technique used widely in broadcast AM transmitters is an application of the Hapburg carrier, first proposed in the 1930s but impractical with the technology then available. During periods of low modulation the carrier power would be reduced and would return to full power during periods of high modulation levels. This has the effect of reducing the overall power demand of the transmitter and is most effective on speech type programmes. Various trade names are used for its implementation by the transmitter manufacturers from the late 80's onwards.


Modulation index

The AM modulation index is a measure based on the ratio of the modulation excursions of the RF signal to the level of the unmodulated carrier. It is thus defined as: :m = \frac = \frac where M\, and A\, are the modulation amplitude and carrier amplitude, respectively; the modulation amplitude is the peak (positive or negative) change in the RF amplitude from its unmodulated value. Modulation index is normally expressed as a percentage, and may be displayed on a meter connected to an AM transmitter. So if m=0.5, carrier amplitude varies by 50% above (and below) its unmodulated level, as is shown in the first waveform, below. For m=1.0, it varies by 100% as shown in the illustration below it. With 100% modulation the wave amplitude sometimes reaches zero, and this represents full modulation using standard AM and is often a target (in order to obtain the highest possible signal-to-noise ratio) but mustn't be exceeded. Increasing the modulating signal beyond that point, known as overmodulation, causes a standard AM modulator (see below) to fail, as the negative excursions of the wave envelope cannot become less than zero, resulting in distortion ("clipping") of the received modulation. Transmitters typically incorporate a
limiter In electronics, a limiter is a circuit that allows signals below a specified input power or level to pass unaffected while attenuating (lowering) the peaks of stronger signals that exceed this threshold. Limiting is a type of dynamic range comp ...
circuit to avoid overmodulation, and/or a compressor circuit (especially for voice communications) in order to still approach 100% modulation for maximum intelligibility above the noise. Such circuits are sometimes referred to as a
vogad Automatic gain control (AGC) is a closed-loop feedback regulating circuit in an amplifier or chain of amplifiers, the purpose of which is to maintain a suitable signal amplitude at its output, despite variation of the signal amplitude at the inpu ...
. However it is possible to talk about a modulation index exceeding 100%, without introducing distortion, in the case of
double-sideband reduced-carrier transmission Double-sideband reduced carrier transmission (DSB-RC): transmission in which (a) the frequencies produced by amplitude modulation are symmetrically spaced above and below the carrier and (b) the carrier level is reduced for transmission at a fixe ...
. In that case, negative excursions beyond zero entail a reversal of the carrier phase, as shown in the third waveform below. This cannot be produced using the efficient high-level (output stage) modulation techniques (see below) which are widely used especially in high power
broadcast Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model. Broadcasting began wi ...
transmitters. Rather, a special modulator produces such a waveform at a low level followed by a
linear amplifier A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power mea ...
. What's more, a standard AM receiver using an envelope detector is incapable of properly demodulating such a signal. Rather, synchronous detection is required. Thus double-sideband transmission is generally ''not'' referred to as "AM" even though it generates an identical RF waveform as standard AM as long as the modulation index is below 100%. Such systems more often attempt a radical reduction of the carrier level compared to the sidebands (where the useful information is present) to the point of double-sideband suppressed-carrier transmission where the carrier is (ideally) reduced to zero. In all such cases the term "modulation index" loses its value as it refers to the ratio of the modulation amplitude to a rather small (or zero) remaining carrier amplitude.


Modulation methods

Modulation circuit designs may be classified as low- or high-level (depending on whether they modulate in a low-power domain—followed by amplification for transmission—or in the high-power domain of the transmitted signal).


Low-level generation

In modern radio systems, modulated signals are generated via
digital signal processing Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are ...
(DSP). With DSP many types of AM are possible with software control (including DSB with carrier, SSB suppressed-carrier and independent sideband, or ISB). Calculated digital samples are converted to voltages with a digital-to-analog converter, typically at a frequency less than the desired RF-output frequency. The analog signal must then be shifted in frequency and linearly amplified to the desired frequency and power level (linear amplification must be used to prevent modulation distortion). This low-level method for AM is used in many Amateur Radio transceivers. AM may also be generated at a low level, using analog methods described in the next section.


High-level generation

High-power AM
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s (such as those used for
AM broadcasting AM broadcasting is radio broadcasting using amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave (also known as "AM band") trans ...
) are based on high-efficiency class-D and class-E power amplifier stages, modulated by varying the supply voltage. Older designs (for broadcast and amateur radio) also generate AM by controlling the gain of the transmitter's final amplifier (generally class-C, for efficiency). The following types are for vacuum tube transmitters (but similar options are available with transistors): ; Plate modulation: In plate modulation, the plate voltage of the RF amplifier is modulated with the audio signal. The audio power requirement is 50 percent of the RF-carrier power. ; Heising (constant-current) modulation: RF amplifier plate voltage is fed through a choke (high-value inductor). The AM modulation tube plate is fed through the same inductor, so the modulator tube diverts current from the RF amplifier. The choke acts as a constant current source in the audio range. This system has a low power efficiency. ; Control grid modulation: The operating bias and gain of the final RF amplifier can be controlled by varying the voltage of the control grid. This method requires little audio power, but care must be taken to reduce distortion. ; Clamp tube (screen grid) modulation: The screen-grid bias may be controlled through a ''clamp tube'', which reduces voltage according to the modulation signal. It is difficult to approach 100-percent modulation while maintaining low distortion with this system. ; Doherty modulation: One tube provides the power under carrier conditions and another operates only for positive modulation peaks. Overall efficiency is good, and distortion is low. ; Outphasing modulation: Two tubes are operated in parallel, but partially out of phase with each other. As they are differentially phase modulated their combined amplitude is greater or smaller. Efficiency is good and distortion low when properly adjusted. ; Pulse-width modulation (PWM) or pulse-duration modulation (PDM): A highly efficient high voltage power supply is applied to the tube plate. The output voltage of this supply is varied at an audio rate to follow the program. This system was pioneered by
Hilmer Swanson Hilmer Irvin Swanson (July 25, 1932 Davenport, Iowa – July 21, 2005 Quincy, Illinois)Harris Corporation obtained a patent for synthesizing a modulated high-power carrier wave from a set of digitally selected low-power amplifiers, running in phase at the same carrier frequency. The input signal is sampled by a conventional audio analog-to-digital converter (ADC), and fed to a digital exciter, which modulates overall transmitter output power by switching a series of low-power solid-state RF amplifiers on and off. The combined output drives the antenna system.


Demodulation methods

The simplest form of AM demodulator consists of a diode which is configured to act as envelope detector. Another type of demodulator, the product detector, can provide better-quality demodulation with additional circuit complexity.


See also

* AM stereo *
Shortwave radio Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 m ...
*
Amplitude modulation signalling system The amplitude modulation signalling system (AMSS or the AM signalling system) is a digital system for adding low bit rate information to an analogue amplitude modulated broadcast signal in the same manner as the Radio Data System (RDS) for frequen ...
(AMSS) *
Modulation sphere The Modulation sphere or M-space formulation is a scheme or theory representing the system of effects of phase modulation and amplitude modulation as applied together on a carrier wave. The relations between both modulations on the carrier are also ...
* Types of radio emissions * Airband *
DSB-SC Double-sideband suppressed-carrier transmission (DSB-SC) is transmission in which frequencies produced by amplitude modulation (AM) are symmetrically spaced above and below the carrier frequency and the carrier level is reduced to the lowest pra ...


References


Bibliography

* Newkirk, David and Karlquist, Rick (2004). Mixers, modulators and demodulators. In D. G. Reed (ed.), ''The ARRL Handbook for Radio Communications'' (81st ed.), pp. 15.1–15.36. Newington: ARRL. .


External links

*
Amplitude Modulation
' by Jakub Serych, Wolfram Demonstrations Project.
Amplitude Modulation
by S Sastry.

an introduction by
Federation of American Scientists The Federation of American Scientists (FAS) is an American nonprofit global policy think tank with the stated intent of using science and scientific analysis to attempt to make the world more secure. FAS was founded in 1946 by scientists who w ...
.
Amplitude Modulation tutorial
including related topics of modulators, demodulators, etc...
Analog Modulation online interactive demonstration
using Python i
Google Colab Platform
by C Foh. {{DEFAULTSORT:Amplitude Modulation Radio modulation modes