HOME

TheInfoList



OR:

The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%. NASA has used alkaline fuel cells since the mid-1960s, in the
Apollo Apollo, grc, Ἀπόλλωνος, Apóllōnos, label=genitive , ; , grc-dor, Ἀπέλλων, Apéllōn, ; grc, Ἀπείλων, Apeílōn, label=Arcadocypriot Greek, ; grc-aeo, Ἄπλουν, Áploun, la, Apollō, la, Apollinis, label= ...
-series missions and on the Space Shuttle.


Half Reactions

The fuel cell produces power through a
redox reaction Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
between hydrogen and oxygen. At the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
, hydrogen is oxidized according to the reaction: \mathrm_2 + \mathrm^- \longrightarrow \mathrm_2\mathrm + \mathrm^- producing water and releasing electrons. The electrons flow through an external circuit and return to the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
, reducing oxygen in the reaction: \mathrm_2 + \mathrm_2\mathrm + \mathrm^- \longrightarrow \mathrm^- producing
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It ...
ions. The net reaction consumes one oxygen molecule and two hydrogen molecules in the production of two water molecules. Electricity and heat are formed as by-products of this reaction.


Electrolyte

The two electrodes are separated by a porous matrix saturated with an aqueous alkaline solution, such as potassium hydroxide (KOH). Aqueous alkaline solutions do not reject carbon dioxide (CO2) so the fuel cell can become "poisoned" through the conversion of KOH to
potassium carbonate Potassium carbonate is the inorganic compound with the formula K2 CO3. It is a white salt, which is soluble in water. It is deliquescent, often appearing as a damp or wet solid. Potassium carbonate is mainly used in the production of soap and ...
(K2CO3). Because of this, alkaline fuel cells typically operate on pure oxygen, or at least purified
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
and would incorporate a 'scrubber' into the design to clean out as much of the carbon dioxide as is possible. Because the generation and storage requirements of oxygen make pure-oxygen AFCs expensive, there are few companies engaged in active development of the technology. There is, however, some debate in the research community over whether the poisoning is permanent or reversible. The main mechanisms of poisoning are blocking of the pores in the cathode with K2CO3, which is not reversible, and reduction in the ionic conductivity of the electrolyte, which may be reversible by returning the KOH to its original concentration. An alternate method involves simply replacing the KOH which returns the cell back to its original output.
When carbon dioxide reacts with the electrolyte carbonates are formed. The carbonates could precipitate on the pores of electrodes that eventually block them. It has been found that AFCs operating at higher temperature do not show a reduction in performance, whereas at around room temperature, a significant drop in performance has been shown. The carbonate poisoning at ambient temperature is thought to be a result of the low solubility of K2CO3 around room temperature, which leads to precipitation of K2CO3 that blocks the electrode pores. Also, these precipitants gradually decrease the hydrophobicity of the electrode backing layer leading to structural degradation and electrode flooding. \mathrm_2 + \mathrm\longrightarrow \mathrm_2\mathrm_3 + \mathrm_2\mathrm
On the other hand, the charge-carrying hydroxide ions in the electrolyte can react with carbon dioxide from organic fuel oxidation (i.e. methanol, formic acid) or air to form carbonate species. \mathrm^- + \mathrm_2\longrightarrow \mathrm_3^ + \mathrm_2\mathrm
Carbonate formation depletes hydroxide ions from the electrolyte, which reduces electrolyte conductivity and consequently cell performance. As well as these bulk effects, the effect on water management due to a change in vapor pressure and/or a change in electrolyte volume can be detrimental as well.


Basic designs

Because of this poisoning effect, two main variants of AFCs exist: static electrolyte and flowing electrolyte. Static, or immobilized, electrolyte cells of the type used in the Apollo space craft and the Space Shuttle typically use an asbestos separator saturated in potassium hydroxide. Water production is controlled by evaporation from the anode, which produces pure water that may be reclaimed for other uses. These fuel cells typically use platinum catalysts to achieve maximum volumetric and specific efficiencies. Flowing electrolyte designs use a more open matrix that allows the electrolyte to flow either between the electrodes (parallel to the electrodes) or through the electrodes in a transverse direction (the ASK-type or EloFlux fuel cell). In parallel-flow electrolyte designs, the water produced is retained in the electrolyte, and old electrolyte may be exchanged for fresh, in a manner analogous to an oil change in a car. More space is required between electrodes to enable this flow, and this translates into an increase in cell resistance, decreasing power output compared to immobilized electrolyte designs. A further challenge for the technology is how severe the problem of permanent blocking of the cathode is by K2CO3; some published reports have indicated thousands of hours of operation on air. These designs have used both platinum and non-noble metal catalysts, resulting in increased efficiencies and increased cost. The EloFlux design, with its transverse flow of electrolyte, has the advantage of low-cost construction and replaceable electrolyte but so far has only been demonstrated using oxygen. The electrodes consist of a double layer structure: an active electrocatalyst layer and a hydrophobic layer. The active layer consists of an organic mixture which is ground and then rolled at room temperature to form a crosslinked self-supporting sheet. The hydrophobic structure prevents the electrolyte from leaking into the reactant gas flow channels and ensures diffusion of the gases to the reaction site. The two layers are then pressed onto a conducting metal mesh, and sintering completes the process. Further variations on the alkaline fuel cell include the
metal hydride fuel cell Metal hydride fuel cells are a subclass of alkaline fuel cells that have been under research and development, as well as scaled up successfully in operating systems. A notable feature is their ability to chemically bond and store hydrogen within t ...
and the
direct borohydride fuel cell Direct borohydride fuel cells (DBFCs) are a subcategory of alkaline fuel cells which are directly fed by sodium borohydride or potassium borohydride as a fuel and either air/oxygen or hydrogen peroxide as the oxidant. DBFCs are relatively new types ...
.


Advantages over acidic fuel cells

Alkaline fuel cells operate between ambient temperature and 90 °C with an electrical efficiency higher than fuel cells with acidic electrolyte, such as
proton exchange membrane fuel cell A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s (PEMFC),
solid oxide fuel cell A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. ...
s, and phosphoric acid fuel cells. Because of the alkaline chemistry, oxygen reduction reaction (ORR) kinetics at the cathode are much more facile than in acidic cells, allowing use of non-
noble metal A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, o ...
s, such as iron,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, pro ...
, or nickel, at the anode (where fuel is oxidized); and cheaper catalysts such as silver or iron
phthalocyanine Phthalocyanine () is a large, aromatic, macrocyclic, organic compound with the formula and is of theoretical or specialized interest in chemical dyes and photoelectricity. It is composed of four isoindole units linked by a ring of nitrogen atom ...
s at the cathode, due to the low
overpotential In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly rela ...
s associated with electrochemical reactions at high pH. An alkaline medium also accelerates oxidation of fuels like methanol, making them more attractive. This results in less pollution compared to acidic fuel cells.


Commercial prospects

AFCs are the cheapest of fuel cells to manufacture. The catalyst required for the electrodes can be any of a number of different chemicals that are inexpensive compared to those required for other types of fuel cells. The commercial prospects for AFCs lie largely with the recently developed bi-polar plate version of this technology, considerably superior in performance to earlier mono-plate versions. The world's first fuel-cell ship, the ''Hydra'', used an AFC system with 5 kW net output. Another recent development is the solid-state alkaline fuel cell, utilizing a solid anion exchange membrane instead of a liquid electrolyte. This resolves the problem of poisoning and allows the development of alkaline fuel cells capable of running on safer hydrogen-rich carriers such as liquid urea solutions or metal amine complexes.


See also

* Gas diffusion electrode *
Glossary of fuel cell terms The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to ...
* Hydrazine * Hydrogen technologies


References


External links

Developers
AFC Energy

Independent Power

Gencell Energy
{{Fuel cells Fuel cells ja:燃料電池#アルカリ電解質形燃料電池 (AFC)