Alexandrov space
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, Alexandrov spaces with curvature ≥ ''k'' form a generalization of
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s with
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
≥ ''k'', where ''k'' is some real number. By definition, these spaces are
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
complete length spaces where the lower curvature bound is defined via comparison of
geodesic triangle In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conne ...
s in the space to geodesic triangles in standard constant-curvature Riemannian surfaces. One can show that the
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
of an Alexandrov space with curvature ≥ ''k'' is either a non-negative integer or infinite. One can define a notion of "angle" (see Comparison triangle#Alexandrov angles) and "tangent cone" in these spaces. Alexandrov spaces with curvature ≥ ''k'' are important as they form the limits (in the Gromov–Hausdorff metric) of sequences of Riemannian manifolds with sectional curvature ≥ ''k'', as described by Gromov's compactness theorem. Alexandrov spaces with curvature ≥ ''k'' were introduced by the Russian mathematician
Aleksandr Danilovich Aleksandrov Aleksandr Danilovich Aleksandrov (; 4 August 1912 – 27 July 1999) was a Soviet and Russian mathematician, physicist, philosopher and mountaineer. Personal life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was ...
in 1948 and should not be confused with Alexandrov-discrete spaces named after the Russian topologist
Pavel Alexandrov Pavel Sergeyevich Alexandrov (), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote roughly three hundred papers, making important contributions to set theory and topology. In topol ...
. They were studied in detail by Burago, Gromov and Perelman in 1992 and were later used in Perelman's proof of the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
.


References

Metric geometry Differential geometry Riemannian manifolds {{Geometry-stub