HOME

TheInfoList



OR:

The aerospike engine is a type of
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accorda ...
that maintains its
aerodynamic Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
efficiency across a wide range of
altitude Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
s. It belongs to the class of altitude compensating nozzle engines. Aerospike engines have been studied for several years and are the baseline engines for many single-stage-to-orbit (SSTO) designs and were also a strong contender for the Space Shuttle main engine. However, no such engine is in commercial production, although some large-scale aerospikes are in testing phases. The terminology in the literature surrounding this subject is somewhat confusing—the term ''aerospike'' was originally used for a truncated plug nozzle with a very rough conical taper and some gas injection, forming an "air spike" to help make up for the absence of the plug tail. However, frequently, a full-length plug nozzle is now called an aerospike.


Principles

The purpose of any engine bell is to direct the exhaust of a rocket engine in one direction, generating thrust in the opposite direction. The exhaust, a high-temperature mix of gases, has an effectively random momentum distribution (i.e., the exhaust pushes in any direction it can). If the exhaust is allowed to escape in this form, only a small part of the flow will be moving in the correct direction and thus contribute to forward thrust. The bell redirects exhaust moving in the wrong direction so that it generates thrust in the correct direction. Ambient air pressure also imparts a small pressure against the exhaust, helping to keep it moving in the "right" direction as it exits the engine. As the vehicle travels upward through the atmosphere, ambient air pressure is reduced. This causes the thrust-generating exhaust to begin to expand outside the edge of the bell. Since this exhaust begins traveling in the "wrong" direction (i.e., outward from the main exhaust plume), the efficiency of the engine is reduced as the rocket travels because this escaping exhaust is no longer contributing to the thrust of the engine. An aerospike rocket engine seeks to eliminate this loss of efficiency. Instead of firing the exhaust out of a small hole in the middle of a bell, an aerospike engine avoids this random distribution by firing along the outside edge of a wedge-shaped protrusion, the "spike", which serves the same function as a traditional engine bell. The spike forms one side of a "virtual" bell, with the other side being formed by the outside air. The idea behind the aerospike design is that at low altitude the ambient pressure compresses the exhaust against the spike. Exhaust recirculation in the base zone of the spike can raise the pressure in that zone to nearly ambient. Since the pressure in front of the vehicle is ambient, this means that the exhaust at the base of the spike nearly balances out with the drag experienced by the vehicle. It gives no overall thrust, but this part of the nozzle also doesn't ''lose'' thrust by forming a partial vacuum. The thrust at the base part of the nozzle can be ignored at low altitude. As the vehicle climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, as does the drag in front of the vehicle. The recirculation zone at the base of the spike maintains the pressure in that zone to a fraction of 1 bar, higher than the near-vacuum in front of the vehicle, thus giving extra thrust as altitude increases. This effectively behaves like an "altitude compensator" in that the size of the bell automatically compensates as air pressure falls. The disadvantages of aerospikes seem to be extra weight for the spike. Furthermore, the larger cooled area can reduce performance below theoretical levels by reducing the pressure against the nozzle. Aerospikes work relatively poorly between Mach 1–3, where the airflow around the vehicle has reduced the pressure, thus reducing the thrust.


Variations

Several versions of the design exist, differentiated by their shapes. In the toroidal aerospike the spike is bowl-shaped with the exhaust exiting in a ring around the outer rim. In theory this requires an infinitely long spike for best efficiency, but by blowing a small amount of gas out of the center of a shorter truncated spike (like base bleed in an artillery shell), something similar can be achieved. In the linear aerospike the spike consists of a tapered wedge-shaped plate, with exhaust exiting on either side at the "thick" end. This design has the advantage of being stackable, allowing several smaller engines to be placed in a row to make one larger engine while augmenting steering performance with the use of individual engine throttle control.


Performance

Rocketdyne Rocketdyne was an American rocket engine design and production company headquartered in Canoga Park, in the western San Fernando Valley of suburban Los Angeles, in southern California. The Rocketdyne Division was founded by North American Avia ...
conducted a lengthy series of tests in the 1960s on various designs. Later models of these engines were based on their highly reliable J-2 engine machinery and provided the same sort of thrust levels as the conventional engines they were based on; 200,000 lbf (890 kN) in the J-2T-200k, and 250,000 lbf (1.1 MN) in the J-2T-250k (the T refers to the toroidal combustion chamber). Thirty years later their work was revived for use in
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
's
X-33 The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was plan ...
project. In this case the slightly upgraded J-2S engine machinery was used with a linear spike, creating the XRS-2200. After more development and considerable testing, this project was cancelled when the X-33's composite fuel tanks repeatedly failed. Three XRS-2200 engines were built during the X-33 program and underwent testing at NASA's Stennis Space Center. The single-engine tests were a success, but the program was halted before the testing for the two-engine setup could be completed. The XRS-2200 produces thrust with an Isp of 339 seconds at sea level, and thrust with an Isp of 436.5 seconds in a vacuum. The RS-2200 Linear Aerospike Engine was derived from the XRS-2200. The RS-2200 was to power the
VentureStar VentureStar was a single-stage-to-orbit reusable launch system proposed by Lockheed Martin and funded by the U.S. government. The goal was to replace the Space Shuttle by developing a re-usable spaceplane that could launch satellites into orbit ...
single-stage-to-orbit vehicle. In the latest design, seven RS-2200s producing each would boost the VentureStar into low earth orbit. The development on the RS-2200 was formally halted in early 2001 when the
X-33 The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was plan ...
program did not receive
Space Launch Initiative The Space Launch Initiative (SLI) was a NASA and U.S. Department of Defense joint research and technology project to determine the requirements to meet all the nation's hypersonics, space launch and space technology needs. It was also known as the ...
funding. Lockheed Martin chose to not continue the VentureStar program without any funding support from NASA. An engine of this type is on outdoor display on the grounds of the NASA Marshall Space Flight Center in Huntsville Alabama. The cancellation of the Lockheed Martin X-33 by the federal government in 2001 decreased funding availability, but aerospike engines remain an area of active research. For example, a milestone was achieved when a joint academic/industry team from California State University, Long Beach (CSULB) and
Garvey Spacecraft Corporation Garvey and O'Garvey are Irish surnames, derived from the Gaelic ''Ó Gairbhith'', also spelt ''Ó Gairbheith'', meaning "descendant of Gairbhith". ''Gairbhith'' itself means "rough peace". There are three distinct Ó Gairbhith septs in Ireland: ...
successfully conducted a flight test of a liquid-propellant powered aerospike engine in the
Mojave Desert The Mojave Desert ( ; mov, Hayikwiir Mat'aar; es, Desierto de Mojave) is a desert in the rain shadow of the Sierra Nevada mountains in the Southwestern United States. It is named for the indigenous Mojave people. It is located primarily ...
on September 20, 2003. CSULB students had developed their Prospector 2 (P-2) rocket using a 1,000 lbf (4.4 kN) LOX/ethanol aerospike engine. This work on aerospike engines continues; Prospector-10, a ten-chamber aerospike engine, was test-fired June 25, 2008. Further progress came in March 2004 when two successful tests sponsored by the NASA
Dryden Flight Research Center The NASA Neil A. Armstrong Flight Research Center (AFRC) is an aeronautical research center operated by NASA. Its primary campus is located inside Edwards Air Force Base in California and is considered NASA's premier site for aeronautical rese ...
using high-power rockets manufactured by Blacksky Corporation, based in Carlsbad, California. The aerospike nozzles and solid rocket motors were developed and built by the rocket motor division of Cesaroni Technology Incorporated, north of Toronto, Ontario. The two rockets were solid-fuel powered and fitted with non-truncated toroidal aerospike nozzles. Flown at the Pecos County Aerospace Development Center, Fort Stockton, Texas, the rockets achieved apogees of and speeds of about Mach 1.5. Small-scale aerospike engine development using a
hybrid rocket A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s. Hybrid rockets avo ...
propellant configuration has been ongoing by members of the Reaction Research Society. In 2020 the
TU Dresden TU Dresden (for german: Technische Universität Dresden, abbreviated as TUD and often wrongly translated as "Dresden University of Technology") is a public research university, the largest institute of higher education in the city of Dresden, th ...
and Fraunhofer IWS started their CFDμSAT-Project for research on additively manufactured aerospike-engines. A prototype has already been tested in a test cell at TU Dresden’s Institute of Aerospace Engineering, achieving a burn time of 30 seconds.


Implementations


Firefly Aerospace

In July 2014 Firefly Space Systems announced its planned Alpha launcher that uses an aerospike engine for its first stage. Intended for the small satellite launch market, it is designed to launch satellites into low-Earth orbit (LEO) at a price of US$8–9 million, much lower than with conventional launchers. Firefly Alpha 1.0 was designed to carry payloads of up to . It uses carbon composite materials and uses the same basic design for both stages. The plug-cluster aerospike engine puts out of thrust. The engine has a bell-shaped nozzle that has been cut in half, then stretched to form a ring with the half-nozzle now forming the profile of a plug. This rocket design was never launched. The design was abandoned after Firefly Space Systems went bankrupt. A new company,
Firefly Aerospace Firefly Aerospace is an American private aerospace firm based in Austin, Texas, that develops launch vehicles for commercial launches to orbit. The company completed its $75 million Series A investment round in May 2021, which was led by DADA ...
, has replaced the aerospike engine with a conventional engine in the Alpha 2.0 design. However, the company has proposed Firefly Gamma, a partially reusable spaceplane with aerospike engines.


ARCA Space

In March 2017 ARCA Space Corporation announced their intention to build a single-stage-to-orbit rocket (SSTO), named Haas 2CA, using a linear aerospike engine. The rocket is designed to send up to 100 kg into low-Earth orbit, at a price of US$1 million per launch. They later announced that their Executor Aerospike engine would produce of thrust at sea level and of thrust in a vacuum. In June 2017, ARCA announced that they would fly their Demonstrator3 rocket to space, also using a linear aerospike engine. This rocket was designed to test several components of their Haas 2CA at lower cost. They announced a flight for August 2017. In September 2017, ARCA announced that, after being delayed, their linear aerospike engine was ready to perform ground tests and flight tests on a Demonstrator3 rocket. On December 20, 2019, ARCA tested the LAS 25DA aerospike steam rocket engine for the Launch Assist System.


KSF Space and Interstellar Space

Another spike engine concept model, by KSF Space and Interstellar Space in Los Angeles, was designed for orbital vehicle named SATORI. Due to lack of funding, the concept is still undeveloped.


Rocketstar

Rocketstar planned to launch its 3D-printed aerospike rocket to an altitude of 50 miles in February 2019 but canceled the mission three days ahead of liftoff citing safety concerns. They are currently working on a second launch attempt.


Pangea Aerospace

In November 2021, Spain-based Pangea Aerospace began hot-fire testing of its small-scale demonstration methane-oxygen aerospike engine DemoP1. After successfully testing the demonstrator DemoP1, Pangea plans to up-scale to the 300kN ARCOS engine.


See also

* Expanding nozzle * * *


References


External links


Aerospike Engine
— includes the J-2T
Aerospike Engine Control System Features And PerformanceX-33 Attitude Control Using The XRS-2200 Linear Aerospike Engine
*
Are Aerospikes Better Than Bell Nozzles?
{{DEFAULTSORT:Aerospike Engine Rocket propulsion Rocket engines Industrial design