HOME

TheInfoList



OR:

Absolute geometry is a
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
based on an
axiom system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contain ...
for
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
without the
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not sufficient as a basis of Euclidean geometry, other systems, such as
Hilbert's axioms Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book ''Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern ax ...
without the parallel axiom, are used. The term was introduced by
János Bolyai János Bolyai (; 15 December 1802 – 27 January 1860) or Johann Bolyai, was a Hungarian mathematician, who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consis ...
in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate.


Properties

It might be imagined that absolute geometry is a rather weak system, but that is not the case. Indeed, in Euclid's ''Elements'', the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry. One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the
Saccheri–Legendre theorem In absolute geometry, the Saccheri–Legendre theorem states that the sum of the angles in a triangle is at most 180°. Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of t ...
, which states that the sum of the measures of the angles in a triangle has at most 180°. Proposition 31 is the construction of a
parallel line In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or interse ...
to a given line through a point not on the given line. As the proof only requires the use of Proposition 27 (the Alternate Interior Angle Theorem), it is a valid construction in absolute geometry. More precisely, given any line ''l'' and any point ''P'' not on ''l'', there is ''at least'' one line through ''P'' which is parallel to ''l''. This can be proved using a familiar construction: given a line ''l'' and a point ''P'' not on ''l'', drop the perpendicular ''m'' from ''P'' to ''l'', then erect a perpendicular ''n'' to ''m'' through ''P''. By the alternate interior angle theorem, ''l'' is parallel to ''n''. (The alternate interior angle theorem states that if lines ''a'' and ''b'' are cut by a transversal ''t'' such that there is a pair of congruent alternate interior angles, then ''a'' and ''b'' are parallel.) The foregoing construction, and the alternate interior angle theorem, do not depend on the parallel postulate and are therefore valid in absolute geometry. In absolute geometry it is also provable that two lines perpendicular to the same line cannot intersect (which makes the two lines parallel by definition of parallel lines), proving that the summit angles of a Saccheri quadrilateral cannot be obtuse, and that
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
is not an absolute geometry.


Relation to other geometries

The theorems of absolute geometry hold in
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
, which is a
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
, as well as in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. Absolute geometry is inconsistent with
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
: in that theory, there are no parallel lines at all, but it is a theorem of absolute geometry that parallel lines do exist. However, it is possible to modify the axiom system so that absolute geometry, as defined by the modified system, will include spherical and elliptic geometries, that have no parallel lines. Absolute geometry is an extension of
ordered geometry Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affi ...
, and thus, all theorems in ordered geometry hold in absolute geometry. The converse is not true. Absolute geometry assumes the first four of Euclid's Axioms (or their equivalents), to be contrasted with
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
, which does not assume Euclid's third and fourth axioms. (3: "To describe a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
with any centre and distance
radius In classical geometry, a radius (plural, : radii) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', ...
.", 4: "That all
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. Th ...
s are equal to one another." ) Ordered geometry is a common foundation of both absolute and affine geometry. The
geometry of special relativity In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the ...
has been developed starting with nine axioms and eleven propositions of absolute geometry. The authors Edwin B. Wilson and
Gilbert N. Lewis Gilbert Newton Lewis (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a Dean of the College of Chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bond a ...
then proceed beyond absolute geometry when they introduce
hyperbolic rotation In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping. For a fixed positive real number , t ...
as the transformation relating two
frames of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathe ...
.


Hilbert planes

A plane that satisfies Hilbert's Incidence,
Betweenness Betweenness is an algorithmic problem in order theory about ordering a collection of items subject to constraints that some items must be placed between others.. It has applications in bioinformatics. and was shown to be NP-complete by . Problem ...
and Congruence axioms is called a Hilbert plane. Hilbert planes are models of absolute geometry.


Incompleteness

Absolute geometry is an incomplete
axiomatic system In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains ...
, in the sense that one can add extra independent axioms without making the axiom system inconsistent. One can extend absolute geometry by adding different axioms about parallel lines and get incompatible but consistent axiom systems, giving rise to Euclidean or hyperbolic geometry. Thus every theorem of absolute geometry is a theorem of hyperbolic geometry and Euclidean geometry. However the converse is not true.


See also

*
Affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
*
Erlangen program In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is nam ...
*
Foundations of geometry Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, bu ...
*
Incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''inciden ...
*
Non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...


Notes


References

* * * * * * Pambuccain, Victor ''Axiomatizations of hyperbolic and absolute geometries'', in: ''Non-Euclidean geometries'' (A. Prékopa and E. Molnár, eds.). János Bolyai memorial volume. Papers from the international conference on hyperbolic geometry, Budapest, Hungary, July 6–12, 2002. New York, NY: Springer, 119–153, 2006.


External links

* * {{Authority control Classical geometry