HOME

TheInfoList



OR:

The ATP-binding cassette transporters (ABC transporters) are a transport system superfamily that is one of the largest and possibly one of the oldest
gene families A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on ...
. It is represented in all
extant Extant is the opposite of the word extinct. It may refer to: * Extant hereditary titles * Extant literature, surviving literature, such as ''Beowulf'', the oldest extant manuscript written in English * Extant taxon, a taxon which is not extin ...
phyla, from prokaryotes to humans. ABC transporters belong to
translocase Translocase is a general term for a protein that assists in moving another molecule, usually across a cell membrane. These enzymes catalyze the movement of ions or molecules across membranes or their separation within membranes. The reaction is de ...
s. ABC transporters often consist of multiple subunits, one or two of which are transmembrane proteins and one or two of which are membrane-associated AAA
ATPases ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
. The ATPase subunits utilize the energy of
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of ...
(ATP) binding and hydrolysis to provide the energy needed for the translocation of substrates across membranes, either for uptake or for export of the substrate. Most of the uptake systems also have an extracytoplasmic receptor, a solute binding protein. Some homologous ATPases function in non-transport-related processes such as translation of RNA and DNA repair. ABC transporters are considered to be an ABC superfamily based on the similarities of the sequence and organization of their ATP-binding cassette (ABC) domains, even though the
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All ''transmembrane proteins'' are IMPs, but not all IMPs are transmembrane proteins. IMPs comprise a signif ...
s appear to have evolved independently several times, and thus comprise different protein families. Like the ABC exporters, it is possible that the integral membrane proteins of ABC uptake systems also evolved at least 3 times independently, based on their high resolution 3-dimensional structures. ABC uptake porters take up a large variety of nutrients, biosynthetic precursors, trace metals and
vitamins A vitamin is an organic molecule (or a set of molecules closely related chemically, i.e. vitamers) that is an essential micronutrient that an organism needs in small quantities for the proper functioning of its metabolism. Essential nutri ...
, while exporters transport lipids,
sterol Sterol is an organic compound with formula , whose molecule is derived from that of gonane by replacement of a hydrogen atom in position 3 by a hydroxyl group. It is therefore an alcohol of gonane. More generally, any compounds that contain the gon ...
s, drugs, and a large variety of primary and secondary metabolites. Some of these exporters in humans are involved in tumor resistance, cystic fibrosis and a range of other inherited human diseases. High level expression of the genes encoding some of these exporters in both prokaryotic and eukaryotic organisms (including human) result in the development of resistance to multiple drugs such as antibiotics and anti-cancer agents. Hundreds of ABC transporters have been characterized from both prokaryotes and eukaryotes. ABC genes are essential for many processes in the cell, and mutations in human genes cause or contribute to several human genetic diseases. Forty eight ABC genes have been reported in humans. Among these, many have been characterized and shown to be causally related to diseases present in humans such as cystic fibrosis,
adrenoleukodystrophy Adrenoleukodystrophy (ALD) is a disease linked to the X chromosome. It is a result of fatty acid buildup caused by peroxisomal fatty acid beta oxidation which results in the accumulation of very long chain fatty acids in tissues throughout the ...
, Stargardt disease, drug-resistant tumors,
Dubin–Johnson syndrome Dubin–Johnson syndrome is a rare, autosomal recessive, benign disorder that causes an isolated increase of conjugated bilirubin in the serum. Classically, the condition causes a black liver due to the deposition of a pigment similar to melanin. ...
, Byler's disease, progressive familiar intrahepatic cholestasis, X-linked
sideroblastic anemia Sideroblastic anemia, or sideroachrestic anemia, is a form of anemia in which the bone marrow produces ringed sideroblasts rather than healthy red blood cells (erythrocytes). In sideroblastic anemia, the body has iron available but cannot incorpora ...
,
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
, and persistent and hyperinsulimenic hypoglycemia. ABC transporters are also involved in multiple drug resistance, and this is how some of them were first identified. When the ABC transport proteins are overexpressed in cancer cells, they can export anticancer drugs and render tumors resistant.


Function

ABC transporters utilize the energy of ATP binding and hydrolysis to transport various substrates across cellular
membranes A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
. They are divided into three main functional categories. In prokaryotes, ''importers'' mediate the uptake of nutrients into the cell. The substrates that can be transported include
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conv ...
s,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s, peptides, sugars, and other molecules that are mostly
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
. The membrane-spanning region of the ABC transporter protects hydrophilic substrates from the lipids of the membrane
bilayer A bilayer is a double layer of closely packed atoms or molecules. The properties of bilayers are often studied in condensed matter physics, particularly in the context of semiconductor devices, where two distinct materials are united to form junc ...
thus providing a pathway across the cell membrane. Eukaryotes do not possess any importers. ''Exporters'' or ''effluxers'', which are present both in prokaryotes and eukaryotes, function as pumps that extrude toxins and drugs out of the cell. In
gram-negative bacteria Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall ...
, exporters transport lipids and some polysaccharides from the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. Th ...
to the
periplasm The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the ''periplasmic space'' in gram-negative bacteria. Using cryo-electron microscopy it has been found that ...
. The third subgroup of ABC proteins do not function as transporters, but are rather involved in translation and DNA repair processes.


Prokaryotic

Bacterial ABC transporters are essential in cell viability, virulence, and pathogenicity. Iron ABC uptake systems, for example, are important effectors of virulence.
Pathogens In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ger ...
use siderophores, such as
Enterobactin Enterobactin (also known as enterochelin) is a high affinity siderophore that acquires iron for microbial systems. It is primarily found in Gram-negative bacteria, such as ''Escherichia coli'' and ''Salmonella typhimurium''. Enterobactin is the ...
, to scavenge iron that is in complex with high-affinity iron-binding proteins or erythrocytes. These are high-affinity iron-chelating molecules that are secreted by bacteria and reabsorb iron into iron-siderophore complexes. The chvE-gguAB gene in ''Agrobacterium tumefaciens'' encodes glucose and
galactose Galactose (, '' galacto-'' + ''-ose'', "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. It is an aldohexose and a C-4 epimer of glucose. A galactose molec ...
importers that are also associated with virulence. Transporters are extremely vital in cell survival such that they function as protein systems that counteract any undesirable change occurring in the cell. For instance, a potential lethal increase in osmotic strength is counterbalanced by activation of osmosensing ABC transporters that mediate uptake of solutes. Other than functioning in transport, some bacterial ABC proteins are also involved in the regulation of several physiological processes. In bacterial efflux systems, certain substances that need to be extruded from the cell include surface components of the bacterial cell (e.g. capsular polysaccharides,
lipopolysaccharides Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O-antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the outer me ...
, and teichoic acid), proteins involved in bacterial pathogenesis (e.g. hemolysis,
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consist ...
-binding protein, and alkaline protease), heme,
hydrolytic enzymes Hydrolase is a class of enzyme that commonly perform as biochemical catalysts that use water to break a chemical bond, which typically results in dividing a larger molecule into smaller molecules. Some common examples of hydrolase enzymes are este ...
, S-layer proteins, competence factors,
toxins A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849 ...
,
antibiotics An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention ...
,
bacteriocins Bacteriocins are proteinaceous or peptidic toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are similar to yeast and paramecium killing factors, and are structurally, functionally, and ec ...
, peptide
antibiotics An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention ...
, drugs and siderophores. They also play important roles in biosynthetic pathways, including extracellular polysaccharide biosynthesis and
cytochrome Cytochromes are redox-active proteins containing a heme, with a central Fe atom at its core, as a cofactor. They are involved in electron transport chain and redox catalysis. They are classified according to the type of heme and its mode of ...
biogenesis.


Eukaryotic

Although most eukaryotic ABC transporters are effluxers, some are not directly involved in transporting substrates. In the cystic fibrosis transmembrane regulator (
CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the ''CFTR'' gene. Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked wi ...
) and in the
sulfonylurea Sulfonylureas (UK: sulphonylurea) are a class of organic compounds used in medicine and agriculture, for example as antidiabetic drugs widely used in the management of diabetes mellitus type 2. They act by increasing insulin release from the beta ...
receptor (SUR), ATP hydrolysis is associated with the regulation of opening and closing of ion channels carried by the ABC protein itself or other proteins. Human ABC transporters are involved in several diseases that arise from polymorphisms in ABC genes and rarely due to complete loss of function of single ABC proteins. Such diseases include
Mendelian Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularize ...
diseases and complex genetic disorders such as cystic fibrosis,
adrenoleukodystrophy Adrenoleukodystrophy (ALD) is a disease linked to the X chromosome. It is a result of fatty acid buildup caused by peroxisomal fatty acid beta oxidation which results in the accumulation of very long chain fatty acids in tissues throughout the ...
, Stargardt disease, Tangier disease, immune deficiencies, progressive familial intrahepatic
cholestasis Cholestasis is a condition where bile cannot flow from the liver to the duodenum. The two basic distinctions are an obstructive type of cholestasis where there is a mechanical blockage in the duct system that can occur from a gallstone or malignan ...
,
Dubin–Johnson syndrome Dubin–Johnson syndrome is a rare, autosomal recessive, benign disorder that causes an isolated increase of conjugated bilirubin in the serum. Classically, the condition causes a black liver due to the deposition of a pigment similar to melanin. ...
, Pseudoxanthoma elasticum, persistent
hyperinsulinemic hypoglycemia Hyperinsulinemic hypoglycemia describes the condition and effects of low blood glucose caused by excessive insulin. Hypoglycemia due to excess insulin is the most common type of serious hypoglycemia. It can be due to endogenous or injected insulin ...
of infancy due to focal adenomatous
hyperplasia Hyperplasia (from ancient Greek ὑπέρ ''huper'' 'over' + πλάσις ''plasis'' 'formation'), or hypergenesis, is an enlargement of an organ or tissue caused by an increase in the amount of organic tissue that results from cell proliferatio ...
, X-linked sideroblastosis and anemia, age-related macular degeneration, familial hypoapoproteinemia, Retinitis pigmentosum, cone rod dystrophy, and others. The human ABCB (MDR/TAP) family is responsible for multiple drug resistance (MDR) against a variety of structurally unrelated drugs. ABCB1 or MDR1 P-glycoprotein is also involved in other biological processes for which lipid transport is the main function. It is found to mediate the secretion of the steroid
aldosterone Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a c ...
by the adrenals, and its inhibition blocked the migration of
dendritic Dendrite derives from the Greek word "dendron" meaning ( "tree-like"), and may refer to: Biology *Dendrite, a branched projection of a neuron * Dendrite (non-neuronal), branching projections of certain skin cells and immune cells Physical *Dendr ...
immune cells, possibly related to the outward transport of the lipid platelet activating factor (PAF). It has also been reported that ABCB1 mediates transport of
cortisol Cortisol is a steroid hormone, in the glucocorticoid class of hormones. When used as a medication, it is known as hydrocortisone. It is produced in many animals, mainly by the ''zona fasciculata'' of the adrenal cortex in the adrenal gland ...
and dexamethasone, but not of progesterone in ABCB1 transfected cells. MDR1 can also transport cholesterol, short-chain and long-chain analogs of
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soybea ...
(PC), phosphatidylethanolamine (PE),
phosphatidylserine Phosphatidylserine (abbreviated Ptd-L-Ser or PS) is a phospholipid and is a component of the cell membrane. It plays a key role in cell cycle signaling, specifically in relation to apoptosis. It is a key pathway for viruses to enter cells via ap ...
(PS), sphingomyelin (SM), and glucosylceramide (GlcCer). Multispecific transport of diverse endogenous lipids through the MDR1 transporter can possibly affect the transbilayer distribution of lipids, in particular of species normally predominant on the inner plasma membrane leaflet such as PS and PE. More recently, ABC-transporters have been shown to exist within the placenta, indicating they could play a protective role for the developing fetus against xenobiotics. Evidence has shown that placental expression of the ABC-transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are increased in preterm compared to term placentae, with P-gp expression further increased in preterm pregnancies with chorioamnionitis. To a lesser extent, increasing maternal BMI also associated with increased placental ABC-transporter expression, but only at preterm.


Structure

All ABC transport proteins share a structural organization consisting of four core domains . These domains consist of two trans-membrane (T) domains and two cytosolic (A) domains. The two T domains alternate between an inward and outward facing orientation, and the alternation is powered by the hydrolysis of adenosine triphosphate or ATP. ATP binds to the A subunits and it is then hydrolyzed to power the alternation, but the exact process by which this happens is not known. The four domains can be present in four separate
polypeptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
, which occur mostly in bacteria, or present in one or two multi-domain
polypeptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
. When the polypeptides are one domain, they can be referred to as a full domain, and when they are two multi-domains they can be referred to as a half domain. The T domains are each built of typically 10 membrane spanning alpha helices, through which the transported substance can cross through the plasma membrane. Also, the structure of the T domains determines the specificity of each ABC protein. In the inward facing conformation, the binding site on the A domain is open directly to the surrounding aqueous solutions. This allows hydrophilic molecules to enter the binding site directly from the inner leaflet of the phospholipid bilayer. In addition, a gap in the protein is accessible directly from the hydrophobic core of the inner leaflet of the membrane bilayer. This allows hydrophobic molecules to enter the binding site directly from the inner leaflet of the phospholipid bilayer. After the ATP powered move to the outward facing conformation, molecules are released from the binding site and allowed to escape into the exoplasmic leaflet or directly into the extracellular medium. The common feature of all ABC transporters is that they consist of two distinct domains, the ''transmembrane domain (TMD)'' and the '' nucleotide-binding domain (NBD)''. The TMD, also known as membrane-spanning domain (MSD) or integral membrane (IM) domain, consists of
alpha helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ea ...
, embedded in the membrane bilayer. It recognizes a variety of substrates and undergoes conformational changes to transport the substrate across the membrane. The sequence and architecture of TMDs is variable, reflecting the chemical diversity of substrates that can be translocated. The NBD or ATP-binding cassette (ABC) domain, on the other hand, is located in the cytoplasm and has a highly conserved sequence. The NBD is the site for ATP binding. In most exporters, the N-terminal transmembrane domain and the C-terminal ABC domains are fused as a single polypeptide chain, arranged as TMD-NBD-TMD-NBD. An example is the ''E. coli'' hemolysin exporter HlyB. Importers have an inverted organization, that is, NBD-TMD-NBD-TMD, where the ABC domain is N-terminal whereas the TMD is C-terminal, such as in the ''E. coli'' MacB protein responsible for macrolide resistance. The structural architecture of ABC transporters consists minimally of two TMDs and two NBDs. Four individual polypeptide chains including two TMD and two NBD subunits, may combine to form a ''full transporter'' such as in the ''E. coli'' BtuCD importer involved in the uptake of vitamin B12. Most exporters, such as in the multidrug exporter Sav1866 from ''Staphylococcus aureus'', are made up of a homodimer consisting of two ''half transporters'' or monomers of a TMD fused to a nucleotide-binding domain (NBD). A full transporter is often required to gain functionality. Some ABC transporters have additional elements that contribute to the regulatory function of this class of proteins. In particular, importers have a high-affinity ''binding protein (BP)'' that specifically associates with the substrate in the periplasm for delivery to the appropriate ABC transporter. Exporters do not have the binding protein but have an ''intracellular domain (ICD)'' that joins the membrane-spanning helices and the ABC domain. The ICD is believed to be responsible for communication between the TMD and NBD.


Transmembrane domain (TMD)

Most transporters have transmembrane domains that consist of a total of 12 α-helices with 6 α-helices per monomer. Since TMDs are structurally diverse, some transporters have varying number of helices (between six and eleven). The TM domains are categorized into three distinct sets of folds: ''type I ABC importer'', ''type II ABC importer'' and ''ABC exporter'' folds. The classification of importer folds is based on detailed characterization of the sequences. The type I ABC importer fold was originally observed in the ModB TM subunit of the
molybdate In chemistry a molybdate is a compound containing an oxoanion with molybdenum in its highest oxidation state of 6. Molybdenum can form a very large range of such oxoanions which can be discrete structures or polymeric extended structures, altho ...
transporter. This diagnostic fold can also be found in the MalF and MalG TM subunits of MalFGK2 and the Met transporter MetI. In the MetI transporter, a minimal set of 5 transmembrane helices constitute this fold while an additional helix is present for both ModB and MalG. The common organization of the fold is the "up-down" topology of the TM2-5 helices that lines the translocation pathway and the TM1 helix wrapped around the outer, membrane-facing surface and contacts the other TM helices. The type II ABC importer fold is observed in the twenty TM helix-domain of BtuCD and in Hi1471, a homologous transporter from ''Haemophilus influenzae''. In BtuCD, the packing of the helices is complex. The noticeable pattern is that the TM2 helix is positioned through the center of the subunit where it is surrounded in close proximity by the other helices. Meanwhile, the TM5 and TM10 helices are positioned in the TMD interface. The membrane spanning region of ABC exporters is organized into two "wings" that are composed of helices TM1 and TM2 from one subunit and TM3-6 of the other, in a domain-swapped arrangement. A prominent pattern is that helices TM1-3 are related to TM4-6 by an approximate twofold rotation around an axis in the plane of the membrane. The exporter fold is originally observed in the Sav1866 structure. It contains 12 TM helices, 6 per monomer.


Nucleotide-binding domain (NBD)

The ABC domain consists of two domains, the ''catalytic core domain'' similar to
RecA RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolo ...
-like motor
ATPases ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
and a smaller, structurally diverse ''α-helical subdomain'' that is unique to ABC transporters. The larger domain typically consists of two β-sheets and six α helices, where the catalytic ''
Walker A motif The Walker A and Walker B motifs are protein sequence motifs, known to have highly conserved three-dimensional structures. These were first reported in ATP-binding proteins by Walker and co-workers in 1982. Of the two motifs, the A motif is ...
'' (GXXGXGKS/T where X is any amino acid) or ''P-loop'' and ''Walker B motif'' (ΦΦΦΦD, of which Φ is a hydrophobic residue) is situated. The helical domain consists of three or four helices and the ''ABC signature motif'', also known as ''LSGGQ motif'', linker peptide or C motif. The ABC domain also has a glutamine residue residing in a flexible loop called ''Q loop'', lid or γ-phosphate switch, that connects the TMD and ABC. The Q loop is presumed to be involved in the interaction of the NBD and TMD, particularly in the coupling of nucleotide hydrolysis to the conformational changes of the TMD during substrate translocation. The ''H motif'' or switch region contains a highly conserved
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the d ...
residue that is also important in the interaction of the ABC domain with ATP. The name ATP-binding cassette is derived from the diagnostic arrangement of the folds or motifs of this class of proteins upon formation of the ATP sandwich and ATP hydrolysis.


ATP binding and hydrolysis

Dimer formation of the two ABC domains of transporters requires ATP binding. It is generally observed that the ATP bound state is associated with the most extensive interface between ABC domains, whereas the structures of nucleotide-free transporters exhibit conformations with greater separations between the ABC domains. Structures of the ATP-bound state of isolated NBDs have been reported for importers including HisP, GlcV, MJ1267, ''E. coli'' MalK (E.c.MalK), ''T. litoralis'' MalK (TlMalK), and exporters such as TAP, HlyB, MJ0796, Sav1866, and MsbA. In these transporters, ATP is bound to the ABC domain. Two molecules of ATP are positioned at the interface of the dimer, sandwiched between the Walker A motif of one subunit and the LSGGQ motif of the other. This was first observed in Rad50 and reported in structures of MJ0796, the NBD subunit of the LolD transporter from ''Methanococcus jannaschii'' and E.c.MalK of a maltose transporter. These structures were also consistent with results from biochemical studies revealing that ATP is in close contact with residues in the P-loop and LSGGQ motif during
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Nucleotide binding is required to ensure the electrostatic and/or structural integrity of the active site and contribute to the formation of an active NBD dimer. Binding of ATP is stabilized by the following interactions: (1) ring-stacking interaction of a conserved aromatic residue preceding the Walker A motif and the adenosine ring of ATP, (2) hydrogen-bonds between a conserved
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
residue in the Walker A motif and the oxygen atoms of the β- and γ-phosphates of ATP and coordination of these phosphates and some residues in the Walker A motif with Mg2+ ion, and (3) γ-phosphate coordination with side chain of serine and backbone
amide In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula , where R, R', and R″ represent organic groups or hydrogen atoms. The amide group is called a peptide bond when it is ...
groups of
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinogen ...
residues in the LSGGQ motif. In addition, a residue that suggests the tight coupling of ATP binding and dimerization, is the conserved histidine in the H-loop. This histidine contacts residues across the dimer interface in the Walker A motif and the D loop, a conserved sequence following the Walker B motif. The enzymatic hydrolysis of ATP requires proper binding of the phosphates and positioning of the γ-phosphate to the attacking water. In the nucleotide binding site, the oxygen atoms of the β- and γ-phosphates of ATP are stabilized by residues in the Walker A motif and coordinate with Mg2+. This Mg2+ ion also coordinates with the terminal
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
residue in the Walker B motif through the attacking H2O. A general base, which may be the glutamate residue adjacent to the Walker B motif, glutamine in the Q-loop, or a histidine in the switch region that forms a hydrogen bond with the γ-phosphate of ATP, is found to catalyze the rate of ATP hydrolysis by promoting the attacking H2O. The precise molecular mechanism of ATP hydrolysis is still controversial.


Mechanism of transport

ABC transporters are
active transport In cellular biology, ''active transport'' is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellul ...
ers, that is, they use energy in the form of adenosine triphosphate (ATP) to translocate substrates across cell membranes. These proteins harness the energy of ATP binding and/or hydrolysis to drive conformational changes in the ''transmembrane domain (TMD)'' and consequently transport molecules. ABC importers and exporters have a common mechanism for transporting substrates. They are similar in their structures. The model that describes the conformational changes associated with the binding of the substrate is the ''alternating-access model''. In this model, the substrate binding site alternates between ''outward-'' and ''inward-facing conformations''. The relative binding affinities of the two conformations for the substrate largely determines the net direction of transport. For importers, since translocation is directed from the periplasm to the cytoplasm, the outward-facing conformation has higher binding affinity for the substrate. In contrast, the substrate binding affinity in exporters is greater in the inward-facing conformation. A model that describes the conformational changes in the ''nucleotide-binding domain (NBD)'' as a result of ATP binding and hydrolysis is the ''ATP-switch model''. This model presents two principal conformations of the NBDs: formation of a closed dimer upon binding two ATP molecules and dissociation to an open dimer facilitated by ATP hydrolysis and release of inorganic phosphate (Pi) and
adenosine diphosphate Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbon ...
(ADP). Switching between the open and closed dimer conformations induces conformational changes in the TMD resulting in substrate translocation. The general mechanism for the transport cycle of ABC transporters has not been fully elucidated, but substantial structural and biochemical data has accumulated to support a model in which ATP binding and hydrolysis is coupled to conformational changes in the transporter. The resting state of all ABC transporters has the NBDs in an open dimer configuration, with low affinity for ATP. This open conformation possesses a chamber accessible to the interior of the transporter. The transport cycle is initiated by binding of substrate to the high-affinity site on the TMDs, which induces conformational changes in the NBDs and enhances the binding of ATP. Two molecules of ATP bind, cooperatively, to form the closed dimer configuration. The closed NBD dimer induces a conformational change in the TMDs such that the TMD opens, forming a chamber with an opening opposite to that of the initial state. The affinity of the substrate to the TMD is reduced, thereby releasing the substrate. Hydrolysis of ATP follows and then sequential release of Pi and then ADP restores the transporter to its basal configuration. Although a common mechanism has been suggested, the order of substrate binding, nucleotide binding and hydrolysis, and conformational changes, as well as interactions between the domains is still debated. Several groups studying ABC transporters have differing assumptions on the driving force of transporter function. It is generally assumed that ATP hydrolysis provides the principal energy input or "power stroke" for transport and that the NBDs operate alternately and are possibly involved in different steps in the transport cycle. However, recent structural and biochemical data shows that ATP binding, rather than ATP hydrolysis, provides the "power stroke". It may also be that since ATP binding triggers NBD dimerization, the formation of the dimer may represent the "power stroke." In addition, some transporters have NBDs that do not have similar abilities in binding and hydrolyzing ATP and that the interface of the NBD dimer consists of two ATP binding pockets suggests a concurrent function of the two NBDs in the transport cycle. Some evidence to show that ATP binding is indeed the power stroke of the transport cycle was reported. It has been shown that ATP binding induces changes in the substrate-binding properties of the TMDs. The affinity of ABC transporters for substrates has been difficult to measure directly, and indirect measurements, for instance through stimulation of ATPase activity, often reflects other rate-limiting steps. Recently, direct measurement of
vinblastine Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small cell lung cancer, bladder ca ...
binding to
permease The permeases are membrane transport proteins, a class of multipass transmembrane proteins that allow the diffusion of a specific molecule in or out of the cell in the direction of a concentration gradient, a form of facilitated diffusion. The per ...
-glycoprotein ( P-glycoprotein) in the presence of nonhydrolyzable ATP analogs, e.g. 5'-adenylyl-β-γ-imidodiphosphate (AMP-PNP), showed that ATP binding, in the absence of hydrolysis, is sufficient to reduce substrate-binding affinity. Also, ATP binding induces substantial conformational changes in the TMDs.
Spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wav ...
, protease accessibility and
crosslinking Cross-linking may refer to *Cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can ...
studies have shown that ATP binding to the NBDs induces conformational changes in multidrug resistance-associated protein-1 (MRP1), HisPMQ, LmrA, and Pgp. Two dimensional crystal structures of AMP-PNP-bound Pgp showed that the major conformational change during the transport cycle occurs upon ATP binding and that subsequent ATP hydrolysis introduces more limited changes. Rotation and tilting of transmembrane α-helices may both contribute to these conformational changes. Other studies have focused on confirming that ATP binding induces NBD closed dimer formation. Biochemical studies of intact transport complexes suggest that the conformational changes in the NBDs are relatively small. In the absence of ATP, the NBDs may be relatively flexible, but they do not involve a major reorientation of the NBDs with respect to the other domains. ATP binding induces a rigid body rotation of the two ABC subdomains with respect to each other, which allows the proper alignment of the nucleotide in the active site and interaction with the designated motifs. There is strong biochemical evidence that binding of two ATP molecules can be cooperative, that is, ATP must bind to the two active site pockets before the NBDs can dimerize and form the closed, catalytically active conformation.


ABC importers

Most ABC transporters that mediate the uptake of nutrients and other molecules in bacteria rely on a high-affinity solute binding protein (BP). BPs are soluble proteins located in the periplasmic space between the inner and outer membranes of
gram-negative bacteria Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall ...
. Gram-positive microorganisms lack a
periplasm The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the ''periplasmic space'' in gram-negative bacteria. Using cryo-electron microscopy it has been found that ...
such that their binding protein is often a lipoprotein bound to the external face of the cell membrane. Some gram-positive bacteria have BPs fused to the transmembrane domain of the transporter itself. The first successful x-ray crystal structure of an intact ABC importer is the molybdenum transporter (ModBC-A) from ''Archaeoglobus fulgidus''. Atomic-resolution structures of three other bacterial importers, ''E. coli'' BtuCD, ''E. coli''
maltose } Maltose ( or ), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two ...
transporter (MalFGK2-E), and the putative metal-chelate transporter of ''Haemophilus influenzae'', HI1470/1, have also been determined. The structures provided detailed pictures of the interaction of the transmembrane and ABC domains as well as revealed two different conformations with an opening in two opposite directions. Another common feature of importers is that each NBD is bound to one TMD primarily through a short cytoplasmic helix of the TMD, the "coupling helix". This portion of the EAA loop docks in a surface cleft formed between the RecA-like and helical ABC subdomains and lies approximately parallel to the membrane bilayer.


Large ABC importers

The BtuCD and HI1470/1 are classified as large (Type II) ABC importers. The transmembrane subunit of the vitamin B12 importer, BtuCD, contains 10 TM helices and the functional unit consists of two copies each of the nucleotide binding domain (NBD) and transmembrane domain (TMD). The TMD and NBD interact with one another via the cytoplasmic loop between two TM helices and the Q loop in the ABC. In the absence of nucleotide, the two ABC domains are folded and the dimer interface is open. A comparison of the structures with (BtuCDF) and without (BtuCD) binding protein reveals that BtuCD has an opening that faces the periplasm whereas in BtuCDF, the outward-facing conformation is closed to both sides of the membrane. The structures of BtuCD and the BtuCD homolog, HI1470/1, represent two different conformational states of an ABC transporter. The predicted translocation pathway in BtuCD is open to the periplasm and closed at the cytoplasmic side of the membrane while that of HI1470/1 faces the opposite direction and open only to the cytoplasm. The difference in the structures is a 9° twist of one TM subunit relative to the other.


Small ABC importers

Structures of the ModBC-A and MalFGK2-E, which are in complex with their binding protein, correspond to small (Type I) ABC importers. The TMDs of ModBC-A and MalFGK2-E have only six helices per subunit. The homodimer of ModBC-A is in a conformation in which the TM subunits (ModB) orient in an inverted V-shape with a cavity accessible to the cytoplasm. The ABC subunits (ModC), on the other hand, are arranged in an open, nucleotide-free conformation, in which the P-loop of one subunit faces but is detached from the LSGGQ motif of the other. The binding protein ModA is in a closed conformation with substrate bound in a cleft between its two lobes and attached to the extracellular loops of ModB, wherein the substrate is sitting directly above the closed entrance of the transporter. The MalFGK2-E structure resembles the catalytic transition state for ATP hydrolysis. It is in a closed conformation where it contains two ATP molecules, sandwiched between the Walker A and B motifs of one subunit and the LSGGQ motif of the other subunit. The maltose binding protein (MBP or MalE) is docked on the periplasmic side of the TM subunits (MalF and MalG) and a large, occluded cavity can be found at the interface of MalF and MalG. The arrangement of the TM helices is in a conformation that is closed toward the cytoplasm but with an opening that faces outward. The structure suggests a possibility that MBP may stimulate the
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
activity of the transporter upon binding.


Mechanism of transport for importers

The mechanism of transport for importers supports the alternating-access model. The resting state of importers is inward-facing, where the nucleotide binding domain (NBD) dimer interface is held open by the TMDs and facing outward but occluded from the cytoplasm. Upon docking of the closed, substrate-loaded binding protein towards the periplasmic side of the transmembrane domains, ATP binds and the NBD dimer closes. This switches the resting state of transporter into an outward-facing conformation, in which the TMDs have reoriented to receive substrate from the binding protein. After hydrolysis of ATP, the NBD dimer opens and substrate is released into the cytoplasm. Release of ADP and Pi reverts the transporter into its resting state. The only inconsistency of this mechanism to the ATP-switch model is that the conformation in its resting, nucleotide-free state is different from the expected outward-facing conformation. Although that is the case, the key point is that the NBD does not dimerize unless ATP and binding protein is bound to the transporter.


ABC exporters

Prokaryotic ABC exporters are abundant and have close homologues in eukaryotes. This class of transporters is studied based on the type of substrate that is transported. One class is involved in the protein (e.g.
toxins A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849 ...
,
hydrolytic enzymes Hydrolase is a class of enzyme that commonly perform as biochemical catalysts that use water to break a chemical bond, which typically results in dividing a larger molecule into smaller molecules. Some common examples of hydrolase enzymes are este ...
, S-layer proteins,
lantibiotics Lantibiotics are a class of polycyclic peptide antibiotics that contain the characteristic thioether amino acids lanthionine or methyllanthionine, as well as the unsaturated amino acids dehydroalanine, and 2-aminoisobutyric acid. They belong to ...
,
bacteriocins Bacteriocins are proteinaceous or peptidic toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are similar to yeast and paramecium killing factors, and are structurally, functionally, and ec ...
, and competence factors) export and the other in drug efflux. ABC transporters have gained extensive attention because they contribute to the resistance of cells to
antibiotics An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention ...
and anticancer agents by pumping drugs out of the cells. A common mechanism is the overexpression of ABC exporters like P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (
MRP1 Multidrug resistance-associated protein 1 (MRP1) is a protein that in humans is encoded by the ''ABCC1'' gene. Function The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins ...
/ ABCC1), and
breast cancer resistance protein ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ''ABCG2'' gene. ABCG2 has also been designated as CDw338 (cluster of differentiation w338). ABCG2 is a translocation protein used to actively pump drugs ...
(BCRP/ABCG2) in cancer cells that limit the exposure to anticancer drugs. In gram-negative organisms, ABC transporters mediate secretion of protein substrates across inner and outer membranes simultaneously without passing through the periplasm. This type of secretion is referred to as ''type I secretion'', which involves three components that function in concert: an ''ABC exporter'', a '' membrane fusion protein (MFP)'', and an ''outer membrane factor (OMF)''. An example is the secretion of hemolysin (HlyA) from ''E. coli'' where the inner membrane ABC transporter HlyB interacts with an inner membrane fusion protein HlyD and an outer membrane facilitator TolC. TolC allows hemolysin to be transported across the two membranes, bypassing the periplasm. Bacterial drug resistance has become an increasingly major health problem. One of the mechanisms for drug resistance is associated with an increase in antibiotic efflux from the bacterial cell. Drug resistance associated with drug efflux, mediated by P-glycoprotein, was originally reported in mammalian cells. In bacteria, Levy and colleagues presented the first evidence that antibiotic resistance was caused by active efflux of a drug. P-glycoprotein is the best-studied efflux pump and as such has offered important insights into the mechanism of bacterial pumps. Although some exporters transport a specific type of substrate, most transporters extrude a diverse class of drugs with varying structure. These transporters are commonly called
multi-drug resistant Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to at least one antimicrobial drug in three or more antimicrobial categories. Antimicrobial categories are c ...
(MDR) ABC transporters and sometimes referred to as "hydrophobic vacuum cleaners".


Human ABCB1/MDR1 P-glycoprotein

P-glycoprotein (3.A.1.201.1) is a well-studied protein associated with multi-drug resistance. It belongs to the human ''ABCB (MDR/TAP)'' family and is also known as ''ABCB1'' or ''MDR1 Pgp''. MDR1 consists of a functional monomer with two transmembrane domains (TMD) and two nucleotide-binding domains (NBD). This protein can transport mainly cationic or electrically neutral substrates as well as a broad spectrum of amphiphilic substrates. The structure of the full-size ABCB1 monomer was obtained in the presence and absence of nucleotide using electron cryo crystallography. Without the nucleotide, the TMDs are approximately parallel and form a barrel surrounding a central pore, with the opening facing towards the extracellular side of the membrane and closed at the intracellular face. In the presence of the nonhydrolyzable ATP analog, AMP-PNP, the TMDs have a substantial reorganization with three clearly segregated domains. A central pore, which is enclosed between the TMDs, is slightly open towards the intracellular face with a gap between two domains allowing access of substrate from the lipid phase. Substantial repacking and possible rotation of the TM helices upon nucleotide binding suggests a helix rotation model for the transport mechanism.


Plant transporters

The genome of the model plant ''Arabidopsis thaliana'' is capable of encoding 120 ABC proteins compared to 50-70 ABC proteins that are encoded by the human genome and fruit flies ('' Drosophila melanogaster''). Plant ABC proteins are categorized in 13 subfamilies on the basis of size (full, half or quarter), orientation, and overall amino acid sequence similarity. Multidrug resistant (MDR) homologs, also known as P-glycoproteins, represent the largest subfamily in plants with 22 members and the second largest overall ABC subfamily. The B subfamily of plant ABC transporters (ABCBs) are characterized by their localization to the plasma membrane. Plant ABCB transporters are characterized by heterologously expressing them in ''Escherichia coli'', ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been ...
'', ''
Schizosaccharomyces pombe ''Schizosaccharomyces pombe'', also called "fission yeast", is a species of yeast used in traditional brewing and as a model organism in molecular and cell biology. It is a unicellular eukaryote, whose cells are rod-shaped. Cells typically measur ...
'' (fission yeast), and HeLa cells to determine substrate specificity. Plant ABCB transporters have shown to transport the phytohormone indole-3-acetic acid ( IAA), also known as
auxin Auxins (plural of auxin ) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essenti ...
, the essential regulator for plant growth and development. The directional polar transport of auxin mediates plant environmental responses through processes such as phototropism and gravitropism. Two of the best studied auxin transporters, ABCB1 and ABCB19, have been characterized to be primary auxin exporters Other ABCB transporters such as ABCB4 participate in both the export and import of auxin At low intracellular auxin concentrations ABCB4 imports auxin until it reaches a certain threshold which then reverses function to only export auxin.


Sav1866

The first high-resolution structure reported for an ABC exporter was that of Sav1866 (3.A.1.106.2) from ''Staphylococcus aureus''. Sav1866 is a homolog of multidrug ABC transporters. It shows significant sequence similarity to human ABC transporters of subfamily B that includes MDR1 and TAP1/TAP2. The ATPase activity of Sav1866 is known to be stimulated by cancer drugs such as doxorubicin,
vinblastine Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small cell lung cancer, bladder ca ...
and others, which suggests similar substrate specificity to P-glycoprotein and therefore a possible common mechanism of substrate translocation. Sav1866 is a homodimer of half transporters, and each subunit contains an N-terminal TMD with six helices and a C-terminal NBD. The NBDs are similar in structure to those of other ABC transporters, in which the two ATP binding sites are formed at the dimer interface between the Walker A motif of one NBD and the LSGGQ motif of the other. The ADP-bound structure of Sav1866 shows the NBDs in a closed dimer and the TM helices split into two "wings" oriented towards the periplasm, forming the outward-facing conformation. Each wing consists of helices TM1-2 from one subunit and TM3-6 from the other subunit. It contains long intracellular loops (ICLs or ICD) connecting the TMDs that extend beyond the lipid bilayer into the cytoplasm and interacts with the 8=D. Whereas the importers contain a short coupling helix that contact a single NBD, Sav1866 has two intracellular coupling helices, one (ICL1) contacting the NBDs of both subunits and the other (ICL2) interacting with only the opposite NBD subunit.


MsbA

MsbA (3.A.1.106.1) is a multi-drug resistant (MDR) ABC transporter and possibly a lipid flippase. It is an
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
that transports lipid A, the hydrophobic moiety of
lipopolysaccharide Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O-antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the outer me ...
(LPS), a glucosamine-based saccharolipid that makes up the outer monolayer of the outer membranes of most gram-negative bacteria. Lipid A is an endotoxin and so loss of MsbA from the cell membrane or mutations that disrupt transport results in the accumulation of lipid A in the inner cell membrane resulting to cell death. It is a close bacterial homolog of P-glycoprotein (Pgp) by protein sequence homology and has overlapping substrate specificities with the MDR-ABC transporter LmrA from ''Lactococcus lactis''. MsbA from ''E. coli'' is 36% identical to the NH2-terminal half of human MDR1, suggesting a common mechanism for transport of amphiphatic and hydrophobic substrates. The MsbA gene encodes a half transporter that contains a transmembrane domain (TMD) fused with a nucleotide-binding domain (NBD). It is assembled as a homodimer with a total molecular mass of 129.2 kD. MsbA contains 6 TMDs on the periplasmic side, an NBD located on the cytoplasmic side of the cell membrane, and an intracellular domain (ICD), bridging the TMD and NBD. This conserved helix extending from the TMD segments into or near the active site of the NBD is largely responsible for crosstalk between TMD and NBD. In particular, ICD1 serves as a conserved pivot about which the NBD can rotate, therefore allowing the NBD to disassociate and dimerize during ATP binding and hydrolysis. Previously published (and now retracted) X-ray structures of MsbA were inconsistent with the bacterial homolog Sav1866. The structures were reexamined and found to have an error in the assignment of the hand resulting to incorrect models of MsbA. Recently, the errors have been rectified and new structures have been reported. The resting state of ''E. coli'' MsbA exhibits an inverted "V" shape with a chamber accessible to the interior of the transporter suggesting an ''open, inward-facing conformation''. The dimer contacts are concentrated between the extracellular loops and while the NBDs are ≈50Å apart, the subunits are facing each other. The distance between the residues in the site of the dimer interface have been verified by
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing experiments and
EPR spectroscopy Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
studies. The relatively large chamber allows it to accommodate large head groups such as that present in lipid A. Significant conformational changes are required to move the large sugar head groups across the membrane. The difference between the two nucleotide-free (apo) structures is the ≈30° pivot of TM4/TM5 helices relative to the TM3/TM6 helices. In the closed apo state (from ''V. cholerae'' MsbA), the NBDs are aligned and although closer, have not formed an ATP sandwich, and the P loops of opposing monomers are positioned next to one another. In comparison to the open conformation, the dimer interface of the TMDs in the ''closed, inward-facing conformation'' has extensive contacts. For both apo conformations of MsbA, the chamber opening is facing inward. The structure of MsbA-AMP-PNP (5'-adenylyl-β-γ-imidodiphosphate), obtained from ''S. typhimurium'', is similar to Sav1866. The NBDs in this ''nucleotide-bound, outward-facing conformation'', come together to form a canonical ATP dimer sandwich, that is, the nucleotide is situated in between the P-loop and LSGGQ motif. The conformational transition from MsbA-closed-apo to MsbA-AMP-PNP involves two steps, which are more likely concerted: a ≈10° pivot of TM4/TM5 helices towards TM3/TM6, bringing the NBDs closer but not into alignment followed by tilting of TM4/TM5 helices ≈20° out of plane. The twisting motion results in the separation of TM3/TM6 helices away from TM1/TM2 leading to a change from an inward- to an outward- facing conformation. Thus, changes in both the orientation and spacing of the NBDs dramatically rearrange the packing of transmembrane helices and effectively switch access to the chamber from the inner to the outer leaflet of the membrane. The structures determined for MsbA is basis for the tilting model of transport. The structures described also highlight the dynamic nature of ABC exporters as also suggested by fluorescence and EPR studies. Recent work has resulted in the discovery of MsbA inhibitors.


Mechanism of transport for exporters

ABC exporters have a transport mechanism that is consistent with both the alternating-access model and ATP-switch model. In the apo states of exporters, the conformation is inward-facing and the TMDs and NBDs are relatively far apart to accommodate amphiphilic or hydrophobic substrates. For MsbA, in particular, the size of the chamber is large enough to accommodate the sugar groups from lipopolysaccharides (LPS). As has been suggested by several groups, binding of substrate initiates the transport cycle. The "power stroke", that is, ATP binding that induces NBD dimerization and formation of the ATP sandwich, drives the conformational changes in the TMDs. In MsbA, the sugar head groups are sequestered within the chamber during the "power stroke". The cavity is lined with charged and polar residues that are likely solvated creating an energetically unfavorable environment for hydrophobic substrates and energetically favorable for polar moieties in amphiphilic compounds or sugar groups from LPS. Since the lipid cannot be stable for a long time in the chamber environment, lipid A and other hydrophobic molecules may "flip" into an energetically more favorable position within the outer membrane leaflet. The "flipping" may also be driven by the rigid-body shearing of the TMDs while the hydrophobic tails of the LPS are dragged through the lipid bilayer. Repacking of the helices switches the conformation into an outward-facing state. ATP hydrolysis may widen the periplasmic opening and push the substrate towards the outer leaflet of the lipid bilayer. Hydrolysis of the second ATP molecule and release of Pi separates the NBDs followed by restoration of the resting state, opening the chamber towards the cytoplasm for another cycle.


Role in multi drug resistance

ABC transporters are known to play a crucial role in the development of multidrug resistance (MDR). In MDR, patients that are on medication eventually develop resistance not only to the drug they are taking but also to several different types of drugs. This is caused by several factors, one of which is increased expulsion of the drug from the cell by ABC transporters. For example, the ABCB1 protein ( P-glycoprotein) functions in pumping tumor suppression drugs out of the cell. Pgp also called MDR1, ABCB1, is the prototype of ABC transporters and also the most extensively-studied gene. Pgp is known to transport organic cationic or neutral compounds. A few ABCC family members, also known as MRP, have also been demonstrated to confer MDR to organic anion compounds. The most-studied member in ABCG family is ABCG2, also known as BCRP (breast cancer resistance protein) confer resistance to most Topoisomerase I or II inhibitors such as topotecan, irinotecan, and doxorubicin. It is unclear exactly how these proteins can translocate such a wide variety of drugs, however, one model (the hydrophobic vacuum cleaner model) states that, in P-glycoprotein, the drugs are bound indiscriminately from the lipid phase based on their hydrophobicity. The Discovery of the first eukaryotic ABC transporter protein came from studies on tumor cells and cultured cells that exhibited resistance to several drugs with unrelated chemical structures. These cells were shown to express elevated levels of multidrug-resistance (MDR) transport protein which was originally called P-glycoprotein (P-gp), but it is also referred to as multidrug resistance protein 1 (MDR1) or ABCB1. This protein uses
ATP hydrolysis ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by prod ...
, just like the other ABC transporters, to export a large variety of drugs from the cytosol to the extracellular medium. In multidrug-resistant cells, the MDR1 gene is frequently amplified. This results in a large overproduction of the MDR1 protein. The substrates of mammalian ABCB1 are primarily planar, lipid-soluble molecules with one or more positive charges. All of these substrates compete with one another for transport, suggesting that they bind to the same or overlapping sites on the protein. Many of the drugs that are transported out by ABCB1 are small, nonpolar drugs that diffuse across the extracellular medium into the cytosol, where they block various cellular functions. Drugs such as colchicine and
vinblastine Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small cell lung cancer, bladder ca ...
, which block assembly of microtubules, freely cross the membrane into the cytosol, but the export of these drugs by ABCB1 reduces their concentration in the cell. Therefore, it takes a higher concentration of the drugs is required to kill the cells that express ABCB1 than those that do not express the gene. Other ABC transporters that contribute to multidrug resistance are ABCC1 (MRP1) and
ABCG2 ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ''ABCG2'' gene. ABCG2 has also been designated as CDw338 (cluster of differentiation w338). ABCG2 is a translocation protein used to actively pump drugs ...
(breast cancer resistance protein). To solve the problems associated with multidrug-resistance by MDR1, different types of drugs can be used or the ABC transporters themselves must be inhibited. For other types of drugs to work, they must bypass the resistance mechanism, which is the
ABC transporter The ATP-binding cassette transporters (ABC transporters) are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC trans ...
. To do this other anticancer drugs can be utilized such as alkylating drugs (
cyclophosphamide Cyclophosphamide (CP), also known as cytophosphane among other names, is a medication used as chemotherapy and to suppress the immune system. As chemotherapy it is used to treat lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer ...
), antimetabolites (
5-fluorouracil Fluorouracil (5-FU), sold under the brand name Adrucil among others, is a cytotoxic chemotherapy medication used to treat cancer. By intravenous injection it is used for treatment of colorectal cancer, oesophageal cancer, stomach cancer, panc ...
), and the anthracycline modified drugs (
annamycin Annamycin is an anthracycline antibiotic being investigated for the treatment of cancer. Further reading * * External links National Cancer Institute Definition of Annamycin Anthracyclines {{antineoplastic-drug-stub ...
and doxorubicin-peptide). These drugs would not function as a substrate of ABC transporters, and would thus not be transported. The other option is to use a combination of ABC inhibitory drugs and anticancer drugs at the same time. This would reverse the resistance to the anticancer drugs so that they could function as intended. The substrates that reverse the resistance to anticancer drugs are called chemosensitizers.


Reversal of multi drug resistance

Drug resistance is a common clinical problem that occurs in patients with infectious diseases and in patients with cancer. Prokaryotic and eukaryotic microorganisms as well as neoplastic cells are often found to be resistant to drugs. MDR is frequently associated with overexpression of ABC transporters. Inhibition of ABC transporters by low-molecular weight compounds has been extensively investigated in cancer patients; however, the clinical results have been disappointing. Recently various
RNAi RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by o ...
strategies have been applied to reverse MDR in different tumor models and this technology is effective in reversing ABC-transporter-mediated MDR in cancer cells and is therefore a promising strategy for overcoming MDR by gene therapeutic applications. RNAi technology could also be considered for overcoming MDR in infectious diseases caused by microbial pathogens.


Physiological role

In addition to conferring MDR in tumor cells, ABC transporters are also expressed in the membranes of healthy cells, where they facilitate the transport of various endogenous substances, as well as of substances foreign to the body. For instance, ABC transporters such as Pgp, the MRPs and BCRP limit the absorption of many drugs from the intestine, and pump drugs from the liver cells to the bile as a means of removing foreign substances from the body. A large number of drugs are either transported by ABC transporters themselves or affect the transport of other drugs. The latter scenario can lead to drug-drug interactions, sometimes resulting in altered effects of the drugs.


Methods to characterize ABC transporter interactions

There are a number of assay types that allow the detection of ABC transporter interactions with endogenous and xenobiotic compounds. The complexity of assay range from relatively simple membrane assays. like vesicular transport assay, ATPase assay to more complex cell based assays up to intricate ''in vivo'' detection methodologies.


Membrane assays

The ''vesicular transport assay'' detects the translocation of molecules by ABC transporters. Membranes prepared under suitable conditions contain inside-out oriented vesicles with the ATP binding site and substrate binding site of the transporter facing the buffer outside. Substrates of the transporter are taken up into the vesicles in an ATP dependent manner. Rapid filtration using glass fiber filters or nitrocellulose membranes are used to separate the vesicles from the incubation solution and the test compound trapped inside the vesicles is retained on the filter. The quantity of the transported unlabelled molecules is determined by HPLC, LC/MS, LC/MS/MS. Alternatively, the compounds are radiolabeled, fluorescent or have a fluorescent tag so that the radioactivity or fluorescence retained on the filter can be quantified. Various types of membranes from different sources (e.g. insect cells, transfected or selected mammalian cell lines) are used in vesicular transport studies. Membranes are commercially available or can be prepared from various cells or even tissues e.g. liver canalicular membranes. This assay type has the advantage of measuring the actual disposition of the substrate across the cell membrane. Its disadvantage is that compounds with medium-to-high passive permeability are not retained inside the vesicles making direct transport measurements with this class of compounds difficult to perform. The vesicular transport assay can be performed in an "indirect" setting, where interacting test drugs modulate the transport rate of a reporter compound. This assay type is particularly suitable for the detection of possible drug-drug interactions and drug-endogenous substrate interactions. It is not sensitive to the passive permeability of the compounds and therefore detects all interacting compounds. Yet, it does not provide information on whether the compound tested is an inhibitor of the transporter, or a substrate of the transporter inhibiting its function in a competitive fashion. A typical example of an indirect vesicular transport assay is the detection of the inhibition of taurocholate transport by ABCB11 ( BSEP).


Whole cell based assays

Efflux transporter-expressing cells actively pump substrates out of the cell, which results in a lower rate of substrate accumulation, lower intracellular concentration at steady state, or a faster rate of substrate elimination from cells loaded with the substrate. Transported radioactive substrates or labeled fluorescent dyes can be directly measured, or in an indirect set up, the modulation of the accumulation of a probe substrate (e.g. fluorescent dyes like rhodamine 123, or calcein) can be determined in the presence of a test drug. Calcein-AM, A highly permeable derivative of
calcein Calcein, also known as fluorexon, fluorescein complex, is a fluorescent dye with excitation and emission wavelengths of 495/515 nm, respectively, and has the appearance of orange crystals. Calcein self- quenches at concentrations above 70 ...
readily penetrates into intact cells, where the endogenous esterases rapidly hydrolyze it to the fluorescent calcein. In contrast to calcein-AM, calcein has low permeability and therefore gets trapped in the cell and accumulates. As calcein-AM is an excellent substrate of the MDR1 and MRP1 efflux transporters, cells expressing MDR1 and/or MRP1 transporters pump the calcein-AM out of the cell before esterases can hydrolyze it. This results in a lower cellular accumulation rate of calcein. The higher the MDR activity is in the cell membrane, the less Calcein is accumulated in the cytoplasm. In MDR-expressing cells, the addition of an MDR inhibitor or an MDR substrate in excess dramatically increases the rate of Calcein accumulation. Activity of multidrug transporter is reflected by the difference between the amounts of dye accumulated in the presence and the absence of inhibitor. Using selective inhibitors, transport activity of MDR1 and MRP1 can be easily distinguished. This assay can be used to screen drugs for transporter interactions, and also to quantify the MDR activity of cells. The calcein assay is the proprietary assay of SOLVO Biotechnology.


Subfamilies


Mammalian subfamilies

There are 49 known ABC transporters present in humans, which are classified into seven families by the Human Genome Organization. A full list of human ABC transporters can be found from.


ABCA

The ABCA subfamily is composed of 12 full transporters split into two subgroups. The first subgroup consists of seven genes that map to six different chromosomes. These are
ABCA1 ATP-binding cassette transporter ABCA1 (member 1 of human transporter sub-family ABCA), also known as the ''cholesterol efflux regulatory protein'' (CERP) is a protein which in humans is encoded by the ''ABCA1'' gene. This transporter is a major ...
, ABCA2,
ABCA3 ATP-binding cassette sub-family A member 3 is a protein that in humans is encoded by the ''ABCA3'' gene. The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins ...
, and
ABCA4 ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ''ABCA4'' gene. ABCA4 is a member of the ATP-binding cassette transporter gene sub-family A (ABC1) found exclusively ...
,
ABCA7 ATP-binding cassette sub-family A member 7 is a protein that in humans is encoded by the ''ABCA7'' gene. Function The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transpo ...
,
ABCA12 ATP-binding cassette sub-family A member 12 also known as ATP-binding cassette transporter 12 is a protein that in humans is encoded by the ''ABCA12'' gene. ABCA12 belongs to a group of genes called the ATP-binding cassette family, which makes ...
, and ABCA13. The other subgroup consists of ABCA5 and ABCA6 and ABCA8, ABCA9 and
ABCA10 ATP binding cassette subfamily A member 10 is a protein that in humans is encoded by the ABCA10 gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ' ...
. A8-10. All of subgroup 2 is organized into a head to tail cluster of chromosomes on
chromosome 17 Chromosome 17 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 17 spans more than 83 million base pairs (the building material of DNA) and represents between 2.5 and 3% of the total ...
q24. Genes in this second subgroup are distinguished from ABCA1-like genes by having 37-38 exons as opposed to the 50 exons in ABCA1. The ABCA1 subgroup is implicated in the development of genetic diseases. In the recessive Tangier's disease, the
ABCA1 ATP-binding cassette transporter ABCA1 (member 1 of human transporter sub-family ABCA), also known as the ''cholesterol efflux regulatory protein'' (CERP) is a protein which in humans is encoded by the ''ABCA1'' gene. This transporter is a major ...
protein is mutated. Also, the
ABCA4 ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ''ABCA4'' gene. ABCA4 is a member of the ATP-binding cassette transporter gene sub-family A (ABC1) found exclusively ...
maps to a region of chromosome 1p21 that contains the gene for Stargardt's disease. This gene is found to be highly expressed in rod photoreceptors and is mutated in Stargardt's disease, recessive retinitis pigmentism, and the majority of recessive cone-rod dystrophy.


ABCB

The ABCB subfamily is composed of four full transporters and two half transporters. This is the only human subfamily to have both half and full types of transporters.
ABCB1 P-glycoprotein 1 (permeability glycoprotein, abbreviated as P-gp or Pgp) also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1) or cluster of differentiation 243 (CD243) is an important protein ...
was discovered as a protein overexpressed in certain drug resistant tumor cells. It is expressed primarily in the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of the central nervous system where neu ...
and liver and is thought to be involved in protecting cells from toxins. Cells that overexpress this protein exhibit multi-drug resistance.


ABCC

Subfamily ABCC contains thirteen members and nine of these transporters are referred to as the Multidrug Resistance Proteins (MRPs). The MRP proteins are found throughout nature and they mediate many important functions. They are known to be involved in ion transport, toxin secretion, and signal transduction. Of the nine MRP proteins, four of them, MRP4, 5, 8, 9, (ABCC4, 5, 11, and 12), have a typical ABC structure with four domains, comprising two membrane spanning domains, with each spanning domain followed by a nucleotide binding domain. These are referred to as short MRPs. The remaining 5 MRP's (MRP1, 2, 6, 7) (ABCC1, 2, 3, 6 and 10) are known as long MRPs and feature an additional fifth domain at their N terminus.
CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the ''CFTR'' gene. Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked wi ...
, the transporter involved in the disease cystic fibrosis, is also considered part of this subfamily. Cystic fibrosis occurs upon mutation and loss of function of CFTR. The sulfonylurea receptors (SUR), involved in insulin secretion, neuronal function, and muscle function, are also part of this family of proteins. Mutations in SUR proteins are a potential cause of
Neonatal diabetes mellitus Neonatal diabetes mellitus (NDM) is a disease that affects an infant and their body's ability to produce or use insulin. NDM is a monogenic (controlled by a single gene) form of diabetes that occurs in the first 6 months of life. Infants do not pr ...
. SUR is also the binding site for drugs such as sulfonylureas and potassium-channel openers activators such as
diazoxide Diazoxide, sold under the brand name Proglycem and others, is a medication used to treat low blood sugar due to a number of specific causes. This includes islet cell tumors that cannot be removed and leucine sensitivity. It can also be used in ...
.


ABCD

The ABCD subfamily consists of four genes that encode half transporters expressed exclusively in the
peroxisome A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen pero ...
.
ABCD1 ABCD1 is a protein that transfers fatty acids into peroxisomes. Function The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and i ...
is responsible for the X-linked form of
Adrenoleukodystrophy Adrenoleukodystrophy (ALD) is a disease linked to the X chromosome. It is a result of fatty acid buildup caused by peroxisomal fatty acid beta oxidation which results in the accumulation of very long chain fatty acids in tissues throughout the ...
(ALD) which is a disease characterized by neurodegeneration and adrenal deficiency that typically is initiated in late childhood. The cells of ALD patients feature accumulation of unbranched saturated fatty acids, but the exact role of
ABCD1 ABCD1 is a protein that transfers fatty acids into peroxisomes. Function The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and i ...
in the process is still undetermined. In addition, the function of other ABCD genes have yet to be determined but have been thought to exert related functions in
fatty acid metabolism Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes ...
.


ABCE and ABCF

Both of these subgroups are composed of genes that have ATP binding domains that are closely related to other ABC transporters, but these genes do not encode for trans-membrane domains. ABCE consists of only one member, OABP or
ABCE1 ATP-binding cassette sub-family E member 1 (ABCE1) also known as RNase L inhibitor (RLI) is an enzyme that in humans is encoded by the ABCE1 gene. ABCE1 is an ATPase that is a member of the ATP-binding cassette (ABC) transporters superfamily an ...
, which is known to recognize certain oligodendrocytes produced in response to certain viral infections. Each member of the ABCF subgroup consist of a pair of ATP binding domains.


ABCG

Six half transporters with ATP binding sites on the N terminus and trans-membrane domains at the C terminus make up the ABCG subfamily. This orientation is opposite of all other ABC genes. There are only 5 ABCG genes in the human genome, but there are 15 in the Drosophila genome and 10 in yeast. The ABCG2 gene was discovered in cell lines selected for high level resistance for mitoxantrone and no expression of
ABCB1 P-glycoprotein 1 (permeability glycoprotein, abbreviated as P-gp or Pgp) also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1) or cluster of differentiation 243 (CD243) is an important protein ...
or ABCC1.
ABCG2 ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ''ABCG2'' gene. ABCG2 has also been designated as CDw338 (cluster of differentiation w338). ABCG2 is a translocation protein used to actively pump drugs ...
can export anthrocycline anticancer drugs, as well as topotecan, mitoxantrone, or doxorubicin as substrates. Chromosomal translocations have been found to cause the ABCG2 amplification or rearrangement found in resistant cell lines. The normal function of
ABCG2 ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ''ABCG2'' gene. ABCG2 has also been designated as CDw338 (cluster of differentiation w338). ABCG2 is a translocation protein used to actively pump drugs ...
is not known.


Cross-species subfamilies

The following classification system for transmembrane solute transporters has been constructed in the TCDB.; Three families of ABC exporters are defined by their evolutionary origins. ABC1 exporters evolved by intragenic triplication of a 2 TMS precursor (TMS = transmembrane segment. A "2 TMS" protein has 2 transmembrane segments) to give 6 TMS proteins. ABC2 exporters evolved by intragenic duplication of a 3 TMS precursor, and ABC3 exporters evolved from a 4 TMS precursor which duplicated either extragenicly to give two 4 TMS proteins, both required for transport function, or intragenicly to give 8 or 10 TMS proteins. The 10 TMS proteins appear to have two extra TMSs between the two 4 TMS repeat units. Most uptake systems (all except 3.A.1.21) are of the ABC2 type, divided into type I and type II by the way they handle nucleotides. A special subfamily of ABC2 importers called ECF use a separate subunit for substrate recognition. ABC1 (): * 3.A.1.106 The Lipid Exporter (LipidE) Family * 3.A.1.108 The β-Glucan Exporter (GlucanE) Family * 3.A.1.109 The Protein-1 Exporter (Prot1E) Family * 3.A.1.110 The Protein-2 Exporter (Prot2E) Family * 3.A.1.111 The Peptide-1 Exporter (Pep1E) Family * 3.A.1.112 The Peptide-2 Exporter (Pep2E) Family * 3.A.1.113 The Peptide-3 Exporter (Pep3E) Family * 3.A.1.117 The Drug Exporter-2 (DrugE2) Family * 3.A.1.118 The Microcin J25 Exporter (McjD) Family * 3.A.1.119 The Drug/Siderophore Exporter-3 (DrugE3) Family * 3.A.1.123 The Peptide-4 Exporter (Pep4E) Family * 3.A.1.127 The AmfS Peptide Exporter (AmfS-E) Family * 3.A.1.129 The CydDC Cysteine Exporter (CydDC-E) Family * 3.A.1.135 The Drug Exporter-4 (DrugE4) Family * 3.A.1.139 The UDP-Glucose Exporter (U-GlcE) Family (UPF0014 Family) * 3.A.1.201 The Multidrug Resistance Exporter (MDR) Family (ABCB) * 3.A.1.202 The Cystic Fibrosis Transmembrane Conductance Exporter (CFTR) Family (ABCC) * 3.A.1.203 The Peroxysomal Fatty Acyl CoA Transporter (P-FAT) Family (ABCD) * 3.A.1.206 The a-Factor Sex Pheromone Exporter (STE) Family (ABCB) * 3.A.1.208 The Drug Conjugate Transporter (DCT) Family (ABCC) (Dębska et al., 2011) * 3.A.1.209 The MHC Peptide Transporter (TAP) Family (ABCB) * 3.A.1.210 The Heavy Metal Transporter (HMT) Family (ABCB) * 3.A.1.212 The Mitochondrial Peptide Exporter (MPE) Family (ABCB) * 3.A.1.21 The Siderophore-Fe3+ Uptake Transporter (SIUT) Family ABC2 ( artial: * 3.A.1.101 The Capsular Polysaccharide Exporter (CPSE) Family * 3.A.1.102 The Lipooligosaccharide Exporter (LOSE) Family * 3.A.1.103 The Lipopolysaccharide Exporter (LPSE) Family * 3.A.1.104 The Teichoic Acid Exporter (TAE) Family * 3.A.1.105 The Drug Exporter-1 (DrugE1) Family * 3.A.1.107 The Putative Heme Exporter (HemeE) Family * 3.A.1.115 The Na+ Exporter (NatE) Family * 3.A.1.116 The Microcin B17 Exporter (McbE) Family * 3.A.1.124 The 3-component Peptide-5 Exporter (Pep5E) Family * 3.A.1.126 The β-Exotoxin I Exporter (βETE) Family * 3.A.1.128 The SkfA Peptide Exporter (SkfA-E) Family * 3.A.1.130 The Multidrug/Hemolysin Exporter (MHE) Family * 3.A.1.131 The Bacitracin Resistance (Bcr) Family * 3.A.1.132 The Gliding Motility ABC Transporter (Gld) Family * 3.A.1.133 The Peptide-6 Exporter (Pep6E) Family * 3.A.1.138 The Unknown ABC-2-type (ABC2-1) Family * 3.A.1.141 The Ethyl Viologen Exporter (EVE) Family (DUF990 Family; ) * 3.A.1.142 The Glycolipid Flippase (G.L.Flippase) Family * 3.A.1.143 The Exoprotein Secretion System (EcsAB(C)) * 3.A.1.144: Functionally Uncharacterized ABC2-1 (ABC2-1) Family * 3.A.1.145: Peptidase Fused Functionally Uncharacterized ABC2-2 (ABC2-2) Family * 3.A.1.146: The actinorhodin (ACT) and undecylprodigiosin (RED) exporter (ARE) family * 3.A.1.147: Functionally Uncharacterized ABC2-2 (ABC2-2) Family * 3.A.1.148: Functionally Uncharacterized ABC2-3 (ABC2-3) Family * 3.A.1.149: Functionally Uncharacterized ABC2-4 (ABC2-4) Family * 3.A.1.150: Functionally Uncharacterized ABC2-5 (ABC2-5) Family * 3.A.1.151: Functionally Uncharacterized ABC2-6 (ABC2-6) Family * 3.A.1.152: The lipopolysaccharide export (LptBFG) Family () * 3.A.1.204 The Eye Pigment Precursor Transporter (EPP) Family (ABCG) * 3.A.1.205 The Pleiotropic Drug Resistance (PDR) Family (ABCG) * 3.A.1.211 The Cholesterol/Phospholipid/Retinal (CPR) Flippase Family (ABCA) * 9.B.74 The Phage Infection Protein (PIP) Family * ''all uptake systems'' (3.A.1.1 - 3.A.1.34 except 3.A.1.21) ** 3.A.1.1 Carbohydrate Uptake Transporter-1 (CUT1) ** 3.A.1.2 Carbohydrate Uptake Transporter-2 (CUT2) ** 3.A.1.3 Polar Amino Acid Uptake Transporter (PAAT) ** 3.A.1.4 Hydrophobic Amino Acid Uptake Transporter (HAAT) ** 3.A.1.5 Peptide/Opine/Nickel Uptake Transporter (PepT) ** 3.A.1.6 Sulfate/Tungstate Uptake Transporter (SulT) ** 3.A.1.7 Phosphate Uptake Transporter (PhoT) ** 3.A.1.8 Molybdate Uptake Transporter (MolT) ** 3.A.1.9 Phosphonate Uptake Transporter (PhnT) ** 3.A.1.10 Ferric Iron Uptake Transporter (FeT) ** 3.A.1.11 Polyamine/Opine/Phosphonate Uptake Transporter (POPT) ** 3.A.1.12 Quaternary Amine Uptake Transporter (QAT) ** 3.A.1.13 Vitamin B12 Uptake Transporter (B12T) ** 3.A.1.14 Iron Chelate Uptake Transporter (FeCT) ** 3.A.1.15 Manganese/Zinc/Iron Chelate Uptake Transporter (MZT) ** 3.A.1.16 Nitrate/Nitrite/Cyanate Uptake Transporter (NitT) ** 3.A.1.17 Taurine Uptake Transporter (TauT) ** 3.A.1.19 Thiamin Uptake Transporter (ThiT) ** 3.A.1.20 Brachyspira Iron Transporter (BIT) ** 3.A.1.21 Siderophore-Fe3+ Uptake Transporter (SIUT) ** 3.A.1.24 The Methionine Uptake Transporter (MUT) Family (Similar to 3.A.1.3 and 3.A.1.12) ** 3.A.1.27 The γ-Hexachlorocyclohexane (HCH) Family (Similar to 3.A.1.24 and 3.A.1.12) ** 3.A.1.34 The Tryptophan (TrpXYZ) Family ** ''ECF uptake systems'' *** 3.A.1.18 The Cobalt Uptake Transporter (CoT) Family *** 3.A.1.22 The Nickel Uptake Transporter (NiT) Family *** 3.A.1.23 The Nickel/Cobalt Uptake Transporter (NiCoT) Family *** 3.A.1.25 The Biotin Uptake Transporter (BioMNY) Family *** 3.A.1.26 The Putative Thiamine Uptake Transporter (ThiW) Family *** 3.A.1.28 The Queuosine (Queuosine) Family *** 3.A.1.29 The Methionine Precursor (Met-P) Family *** 3.A.1.30 The Thiamin Precursor (Thi-P) Family *** 3.A.1.31 The Unknown-ABC1 (U-ABC1) Family *** 3.A.1.32 The Cobalamin Precursor (B12-P) Family *** 3.A.1.33 The Methylthioadenosine (MTA) Family ABC3 (): * 3.A.1.114 The Probable Glycolipid Exporter (DevE) Family * 3.A.1.122 The Macrolide Exporter (MacB) Family * 3.A.1.125 The Lipoprotein Translocase (LPT) Family * 3.A.1.134 The Peptide-7 Exporter (Pep7E) Family * 3.A.1.136 The Uncharacterized ABC-3-type (U-ABC3-1) Family * 3.A.1.137 The Uncharacterized ABC-3-type (U-ABC3-2) Family * 3.A.1.140 The FtsX/FtsE Septation (FtsX/FtsE) Family * 3.A.1.207 The Eukaryotic ABC3 (E-ABC3) Family View Proteins belonging to ABC Superfamily
here
''


Images

Many structures of water-soluble domains of ABC proteins have been produced in recent years.


See also

*
ATP-binding domain of ABC transporters In molecular biology, ATP-binding domain of ABC transporters is a water-soluble Protein domain, domain of transmembrane ABC transporters. ABC transporters belong to the ABC transporters, ATP-Binding Cassette superfamily, which uses the hydrolys ...
* Transmembrane domain of ABC transporters * Elizabeth P. Carpenter, British structural biologist, first to describe structure of human ABC-transporter ABC10


References


Further reading

* * *


External links


Classification of ABC transporters
in TCDB
ABCdb
Archaeal and Bacterial ABC Systems database, ABCdb * {{DEFAULTSORT:Atp-Binding Cassette Transporter ATP-binding cassette transporters Protein families