Auxiliary-field
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, and especially
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, an auxiliary field is one whose
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathem ...
admit a single solution. Therefore, the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
describing such a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
A contains an algebraic quadratic term and an arbitrary linear term, while it contains no
kinetic term In quantum field theory, a kinetic term is any term in the Lagrangian that is bilinear in the fields and has at least one derivative. Fields with kinetic terms are dynamical and together with mass terms define a free field theory. Their form i ...
s (
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s of the field): :\mathcal_\text = \frac(A, A) + (f(\varphi), A). The equation of motion for A is :A(\varphi) = -f(\varphi), and the Lagrangian becomes :\mathcal_\text = -\frac(f(\varphi), f(\varphi)). Auxiliary fields generally do not propagate, and hence the content of any theory can remain unchanged in many circumstances by adding such fields by hand. If we have an initial Lagrangian \mathcal_0 describing a field \varphi, then the Lagrangian describing both fields is :\mathcal = \mathcal_0(\varphi) + \mathcal_\text = \mathcal_0(\varphi) - \frac\big(f(\varphi), f(\varphi)\big). Therefore, auxiliary fields can be employed to cancel quadratic terms in \varphi in \mathcal_0 and linearize the
action Action may refer to: * Action (philosophy), something which is done by a person * Action principles the heart of fundamental physics * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video gam ...
\mathcal = \int \mathcal \,d^n x. Examples of auxiliary fields are the complex scalar field F in a
chiral superfield In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry. Then a superfield is a field on superspace which is valued in such a representation. Naïvely, or when considering fla ...
, the real scalar field D in a
vector superfield In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion. Gauge theory A gauge theory is a field theory with gauge symmetry. Rough ...
, the scalar field B in BRST and the field in the
Hubbard–Stratonovich transformation The Hubbard–Stratonovich (HS) transformation is an exact mathematical transformation invented by Russian physicist Ruslan L. Stratonovich and popularized by British physicist John Hubbard. It is used to convert a particle theory into its resp ...
. The
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
effect of adding an auxiliary field is the same as the classical, since the path integral over such a field is
Gaussian Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
. To wit: :\int_^\infty dA\, e^ = \sqrte^{\frac{f^2}{2.


See also

*
Bosonic field In quantum field theory, a bosonic field is a quantum field whose quanta are bosons; that is, they obey Bose–Einstein statistics. Bosonic fields obey canonical commutation relations, as distinct from the canonical anticommutation relations obey ...
*
Fermionic field In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of ...
*
Composite Field In quantum field theory, a composite field is a field defined in terms of other more "elementary" fields. It might describe a composite particle (bound state) or it might not. It might be local, or it might be nonlocal. However, "quantum field ...


References

Quantum field theory