In the field of
mathematics called
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The te ...
, a division algebra is, roughly speaking, an
algebra over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and additio ...
in which
division
Division or divider may refer to:
Mathematics
*Division (mathematics), the inverse of multiplication
*Division algorithm, a method for computing the result of mathematical division
Military
* Division (military), a formation typically consisting ...
, except by zero, is always possible.
Definitions
Formally, we start with a
non-zero algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
''D'' over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that .
For
associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
it has a multiplicative
identity element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures s ...
1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ).
Associative division algebras
The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s, which are finite-
dimensional as a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
over the reals). The
Frobenius theorem states that
up to Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R''
* if ''a'' and ''b'' are related by ''R'', that is,
* if ''aRb'' holds, that is,
* if the equivalence classes of ''a'' and ''b'' with respect to ''R'' a ...
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
there are three such algebras: the reals themselves (dimension 1), the field of
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s (dimension 2), and the
quaternions
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
(dimension 4).
Wedderburn's little theorem In mathematics, Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields.
The Artin–Zorn theorem generalizes the theorem to alte ...
states that if ''D'' is a finite division algebra, then ''D'' is a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
.
Over an
algebraically closed field ''K'' (for example the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s C), there are no finite-dimensional associative division algebras, except ''K'' itself.
Associative division algebras have no
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero ...
s. A ''finite-dimensional''
unital associative algebra (over any field) is a division algebra ''if and only if'' it has no zero divisors.
Whenever ''A'' is an associative
unital algebra
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and additio ...
over the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
''F'' and ''S'' is a
simple module In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every ...
over ''A'', then the
endomorphism ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
of ''S'' is a division algebra over ''F''; every associative division algebra over ''F'' arises in this fashion.
The
center of an associative division algebra ''D'' over the field ''K'' is a field containing ''K''. The dimension of such an algebra over its center, if finite, is a
perfect square: it is equal to the square of the dimension of a maximal subfield of ''D'' over the center. Given a field ''F'', the
Brauer equivalence Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:-
* Alfred Brauer (1894–1985), German-American mathematician, brother of Richard
* Andreas Brauer (born 1973), German film producer
* Arik B ...
classes of simple (contains only trivial two-sided ideals) associative division algebras whose center is ''F'' and which are finite-dimensional over ''F'' can be turned into a group, the
Brauer group Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:-
* Alfred Brauer (1894–1985), German-American mathematician, brother of Richard
* Andreas Brauer (born 1973), German film producer
* Arik ...
of the field ''F''.
One way to construct finite-dimensional associative division algebras over arbitrary fields is given by the
quaternion algebra
In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a ...
s (see also
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quat ...
s).
For infinite-dimensional associative division algebras, the most important cases are those where the space has some reasonable
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
. See for example
normed division algebra
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic fo ...
s and
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
s.
Not necessarily associative division algebras
If the division algebra is not assumed to be associative, usually some weaker condition (such as
alternativity or
power associativity In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity.
Definition
An algebra (or more generally a magma) is said to be power-associative if the subalgebra g ...
) is imposed instead. See
algebra over a field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and additio ...
for a list of such conditions.
Over the reals there are (up to isomorphism) only two unitary
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
finite-dimensional division algebras: the reals themselves, and the complex numbers. These are of course both associative. For a non-associative example, consider the complex numbers with multiplication defined by taking the
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
of the usual multiplication:
:
This
This may refer to:
* ''This'', the singular proximal demonstrative pronoun
Places
* This, or ''Thinis'', an ancient city in Upper Egypt
* This, Ardennes, a commune in France
People with the surname
* Hervé This, French culinary chemist Art ...
is a commutative, non-associative division algebra of dimension 2 over the reals, and has no unit element. There are infinitely many other non-isomorphic commutative, non-associative, finite-dimensional real divisional algebras, but they all have dimension 2.
In fact, every finite-dimensional real commutative division algebra is either 1- or 2-dimensional. This is known as
Hopf's theorem, and was proved in 1940. The proof uses methods from
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
. Although a later proof was found using
algebraic geometry, no direct algebraic proof is known. The
fundamental theorem of algebra
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomia ...
is a corollary of Hopf's theorem.
Dropping the requirement of commutativity, Hopf generalized his result: Any finite-dimensional real division algebra must have dimension a power of 2.
Later work showed that in fact, any finite-dimensional real division algebra must be of dimension 1, 2, 4, or 8. This was independently proved by
Michel Kervaire
Michel André Kervaire (26 April 1927 – 19 November 2007) was a French mathematician who made significant contributions to topology and algebra.
He introduced the Kervaire semi-characteristic. He was the first to show the existence of topologic ...
and
John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Un ...
in 1958, again using techniques of
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
, in particular
K-theory
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geom ...
.
Adolf Hurwitz
Adolf Hurwitz (; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory.
Early life
He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died ...
had shown in 1898 that the identity
held only for dimensions 1, 2, 4 and 8. (See
Hurwitz's theorem.) The challenge of constructing a division algebra of three dimensions was tackled by several early mathematicians.
Kenneth O. May surveyed these attempts in 1966.
[ Kenneth O. May (1966) "The Impossiblility of a Division Algebra of Vectors in Three Dimensional Space", ]American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America.
The ''American Mathematical Monthly'' is an ...
73(3): 289–91
Any real finite-dimensional division algebra
over the reals must be
* isomorphic to R or C if unitary and commutative (equivalently: associative and commutative)
* isomorphic to the quaternions if noncommutative but associative
* isomorphic to the
octonions if non-associative but
alternative.
The following is known about the dimension of a finite-dimensional division algebra ''A'' over a field ''K'':
* dim ''A'' = 1 if ''K'' is
algebraically closed
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in .
Examples
As an example, the field of real numbers is not algebraically closed, becaus ...
,
* dim ''A'' = 1, 2, 4 or 8 if ''K'' is
real closed
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.
Def ...
, and
* If ''K'' is neither algebraically nor real closed, then there are infinitely many dimensions in which there exist division algebras over ''K''.
See also
*
Normed division algebra
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic fo ...
*
Division (mathematics)
Division is one of the four basic operations of arithmetic, the ways that numbers are combined to make new numbers. The other operations are addition, subtraction, and multiplication.
At an elementary level the division of two natural number ...
*
Division ring
In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
*
Semifield
In mathematics, a semifield is an algebraic structure with two binary operations, addition and multiplication, which is similar to a field, but with some axioms relaxed.
Overview
The term semifield has two conflicting meanings, both of which inc ...
*
Cayley–Dickson construction
In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by ...
Notes
References
*
*
External links
* {{springer, title=Division algebra, id=p/d033680
Algebras
Ring theory