Aquifer Thermal Energy Storage
   HOME

TheInfoList



OR:

Aquifer thermal energy storage (ATES) is the storage and recovery of
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
in subsurface
aquifer An aquifer is an underground layer of water-bearing material, consisting of permeability (Earth sciences), permeable or fractured rock, or of unconsolidated materials (gravel, sand, or silt). Aquifers vary greatly in their characteristics. The s ...
s. ATES can heat and cool buildings. Storage and recovery is achieved by extraction and injection of
groundwater Groundwater is the water present beneath Earth's surface in rock and Pore space in soil, soil pore spaces and in the fractures of stratum, rock formations. About 30 percent of all readily available fresh water in the world is groundwater. A unit ...
using
well A well is an excavation or structure created on the earth by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The ...
s. Systems commonly operate in seasonal modes. Groundwater that is extracted in summer performs cooling by transferring heat from the building to the water by means of a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
. The heated groundwater is reinjected into the aquifer, which stores the heated water. In wintertime, the flow is reversed — heated groundwater is extracted (often fed to a
heat pump A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
). An ATES system uses the aquifer to buffer seasonal reversals in heating and cooling demand. ATES can serve as a cost-effective technology to replace fossil fuel-dependent systems and associated emissions. ATES can contribute significantly to emission reductions, as buildings consume some 40% of global energy, mainly for
heating In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, atom ...
and
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or Phase transition, phase change. Temperature lowering achieved by any other means may also be called cooling. The Heat transfer, transfer of Internal energy, thermal energ ...
. The number of ATES systems has increased dramatically, especially in Europe. Belgium, Germany, Turkey, and Sweden are also increasing the application of ATES. ATES can be applied wherever the climatic conditions and geohydrological conditions are appropriate. Optimisation of subsurface space requires attention in areas with suitable conditions.


System types

Bidirectional ATES systems consist of two wells (a doublet). One well is used for heat storage, and the other for cold storage. During winter, (warm) groundwater is extracted from the heat storage well and injected in the cold storage well. During summer, the flow direction is reversed such that (cold) groundwater is extracted from the cold storage well and injected in the heat storage well. Mono-directional systems do not switch pumping direction, such that groundwater is always extracted at the natural aquifer temperature. Although thermal energy is stored in the subsurface, there is usually no intention to retrieve the stored energy. Closed systems store energy by circulating a fluid through a buried
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
that usually consists of a horizontal or vertical pipeline. These systems do not extract or inject groundwater. They are also known as borehole thermal energy storage or
ground source heat pumps Ground may refer to: Geology * Land, the solid terrestrial surface of the Earth * Soil, a mixture of clay, sand and organic matter present on the surface of the Earth Electricity * Ground (electricity), the reference point in an electrical circ ...
.
Geothermal energy Geothermal energy is thermal energy extracted from the crust (geology), crust. It combines energy from the formation of the planet and from radioactive decay. Geothermal energy has been exploited as a source of heat and/or electric power for m ...
production commonly uses the deeper subsurface where temperatures are higher.


History

The first reported deliberate storage of thermal energy in aquifers was in China around 1960. The first ATES systems were built for industrial cooling in Shanghai. There, large amounts of groundwater were extracted to cool textile factories. This led to substantial land subsidence. To inhibit the subsidence, cold surface water was reinjected into the aquifer. Subsequently, it was observed that the stored water remained cold after injection and could be used for cooling. Storage of thermal energy in aquifers was suggested in the 1970s which led to field experiments and feasibility studies in France, Switzerland, US and Japan. ATES was used as part of enhanced
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in mycoremediation, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, wate ...
in the Netherlands in 2009. As of 2018, more than 2800 ATES systems were in operation, providing more than 2.5 TWh of heating and cooling per year. The Netherlands and Sweden dominated the market. 85% of all systems were then located in the Netherlands, while a further 10% were found in Sweden, Denmark, and Belgium.


Typical dimensions

Flow rates for typical applications are between 20 and 150 m/hour/well. The volume of groundwater that is stored and recovered in a year generally varies between 10 000 m and 150 000 m per well. ATES system depths is commonly between 20 and 200 meters. Temperature at these depths is generally close to the annual mean surface temperature. In moderate climates this is around 10 °C. In those regions cold storage is commonly applied between 5 and 10 °C and heat storage in the range 10 to 20 °C. Although less frequent, some projects store heat above 80 °C.


Hydrogeological constraints

Energy savings that can be achieved with ATES depend strongly on site geology. ATES requires the presence of a suitable aquifer that is able to accept and yield water. For example solid rock limits access to the aquifer. Thick (>10 m) sandy aquifers are optimal. Sufficient hydraulic conductivity is required, enough that water flows easily. However, excess groundwater flow may transport (part of) the stored energy outside of a well's capture zone during the storage phase. To reduce advective heat loss, aquifers with a low hydraulic gradient are preferred. In addition, gradients in geochemical composition should be avoided, as mixing of water with heterogeneous geochemistry can increase clogging, which reduces performance and increases maintenance costs.


Legal status

Shallow (<400 m) geothermal installations' legal status is diverse among countries. Regulations for installations concern the use of hazardous materials and proper backfilling of the borehole to avoid hydraulic short circuiting between aquifers. Other regulations concern protection of groundwater areas for potable water. Some countries limit minimum and maximum storage temperatures. For example, Austria (5–20 °C), Denmark (2–25 °C) and Netherlands (5–25 °C). Other countries adopt a maximum change in groundwater temperature, for example Switzerland (3 °C) and France (11 °C).


Contaminated groundwater

ATES is not allowed to process contaminated aquifers, due to the possible spreading of groundwater contamination, especially in urban areas. The possibility of contamination encounter is however rising, because of the rapid increase of the number of ATES and slow progress of contaminated groundwater remediation in urban areas. Among the common contaminants, chlorinated ethenes have the most chance to interfere with ATES systems, as they are often found at similar depths. When chlorinated ethenes present as
dense non-aqueous phase liquid A dense non-aqueous phase liquid or DNAPL is a denser-than-water NAPL, i.e. a liquid that is both denser than water and is immiscible in or does not dissolve in water. * in situ surfactant flushing * air sparging * heating Most DNAPLs remain ...
(DNAPLs), the possible dissolution of DNAPLs by ATES will increase the impact on groundwater quality.


Possible application

The presence of ATES and chlorinated ethenes offers the potential for of integration of sustainable energy technology and sustainable groundwater management.Ni, Z. (2015) Bioremediation in aquifer thermal energy storage. Dissertation (in press), Wageningen University. Increased temperature around the warm well can enhance reductive dechlorination of chlorinated ethenes. Although low temperature in cold well can hamper biodegradation, seasonal operation of ATES can transfer contaminant from cold well to hot well for faster remediation. Such seasonal groundwater transport can homogenize the environmental condition. ATES can be used as biostimulation, for example to inject electron donor or microorganisms needed for reductive dechlorination. The lifespan of ATES (30 years) fits the required duration of in situ bioremediation.


Societal impacts

The combination concept of ATES and enhanced natural attenuation (ATES-ENA) can possibly be used in the Netherlands and China, especially in urbanized areas. These areas are confronted with organic groundwater contamination. Currently, the combination concept may be better applicable for the Netherlands which offers more mature technology and greater experience. However, for China where ATES is much less developed, demonstration pilot projects can be evaluated prior to production applications, and flexible systems can be developed because of the less intense pressure on subsurface use by ATES. A 2023 study reported that ATES could reduce the use of energy in heating and cooling US homes and businesses by 40 percent.


References

{{Reflist Aquifers Energy storage