HOME

TheInfoList



OR:

In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two line segments are said to be "commensurable only in power" when the ratio of their lengths is an irrational number but the ratio of their squared lengths is rational. Translated into modern algebraic language, an apotome can be interpreted as a quadratic irrational number formed by subtracting one square root of a rational number from another. This concept of the apotome appears in ''
Euclid's Elements The ''Elements'' ( ) is a mathematics, mathematical treatise written 300 BC by the Ancient Greek mathematics, Ancient Greek mathematician Euclid. ''Elements'' is the oldest extant large-scale deductive treatment of mathematics. Drawing on the w ...
'' beginning in book X, where
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
defines two special kinds of apotomes. In an apotome of the first kind, the whole is rational, while in an apotome of the second kind, the part subtracted from it is rational; both kinds of apotomes also satisfy an additional condition. Euclid Proposition XIII.6 states that, if a rational line segment is split into two pieces in the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
, then both pieces may be represented as apotomes.Euclid Proposition XIII.6


References

Mathematical terminology Euclidean geometry Greek mathematics {{numtheory-stub