HOME

TheInfoList



OR:

The analytic element method (AEM) is a numerical method used for the solution of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s. It was initially developed by O.D.L. Strack at the
University of Minnesota The University of Minnesota Twin Cities (historically known as University of Minnesota) is a public university, public Land-grant university, land-grant research university in the Minneapolis–Saint Paul, Twin Cities of Minneapolis and Saint ...
. It is similar in nature to the boundary element method (BEM), as it does not rely upon the discretization of volumes or areas in the modeled system; only internal and external boundaries are discretized. One of the primary distinctions between AEM and BEMs is that the boundary integrals are calculated analytically. Although originally developed to model groundwater flow, AEM has subsequently been applied to other fields of study including studies of heat flow and conduction, periodic waves, and deformation by force.


Mathematical basis

The basic premise of the analytic element method is that, for
linear differential equation In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) wher ...
s, elementary solutions may be superimposed to obtain more complex solutions. A suite of 2D and 3D analytic solutions ("elements") are available for different governing equations. These elements typically correspond to a discontinuity in the dependent variable or its gradient along a geometric boundary (e.g., point, line, ellipse, circle, sphere, etc.). This discontinuity has a specific functional form (usually a polynomial in 2D) and may be manipulated to satisfy Dirichlet, Neumann, or Robin (mixed) boundary conditions. Each analytic solution is infinite in space and/or time. Commonly each analytic solution contains degrees of freedom (coefficients) that may be calculated to meet prescribed boundary conditions along the element's border. To obtain a global solution (i.e., the correct element coefficients), a system of equations is solved such that the boundary conditions are satisfied along all of the elements (using
collocation In corpus linguistics, a collocation is a series of words or terms that co-occur more often than would be expected by chance. In phraseology, a collocation is a type of compositional phraseme, meaning that it can be understood from the words t ...
, least-squares minimization, or a similar approach). Notably, the global solution provides a spatially continuous description of the dependent variable everywhere in the infinite domain, and the governing equation is satisfied everywhere exactly except along the border of the element, where the governing equation is not strictly applicable due to discontinuity. The ability to superpose numerous elements in a single solution means that analytical solutions can be realized for arbitrarily complex boundary conditions. That is, models that have complex geometries, straight or curved boundaries, multiple boundaries, transient boundary conditions, multiple aquifer layers, piecewise varying properties, and continuously varying properties can be solved. Elements can be implemented using far-field expansions such that models containing many thousands of elements can be solved efficiently to high precision. The analytic element method has been applied to problems of
groundwater flow In hydrogeology, groundwater flow is defined as the "part of streamflow that has infiltrated the ground, entered the phreatic zone, and has been (or is at a particular time) discharged into a stream channel or springs; and seepage water."Cho ...
governed by a variety of linear partial differential equations including the
Laplace Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
, the
Poisson equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with th ...
, the modified Helmholtz equation, the
heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
, and the biharmonic equations. Often these equations are solved using complex variables which enables using mathematical techniques available in complex variable theory. A useful technique to solve complex problems is using
conformal map In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-prese ...
ping which maps the boundary of a geometry, e.g. an ellipse, onto the boundary of the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
where the solution is known. In the analytic element method the discharge potential and
stream function In fluid dynamics, two types of stream function (or streamfunction) are defined: * The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, is defined for incompressible flow, incompressible (divergence-free ...
, or combined the complex potential, are used. This potential links the physical properties of the groundwater system, the hydraulic head or flow boundaries, to a mathematical representation of a potential. This mathematical representation can be used to calculate the potential in terms of position and thus also solve groundwater flow problems. Elements are developed by solving the boundary conditions for either of these two properties, hydraulic head or flow boundary, which results in analytical solutions capable of dealing with numerous boundary conditions.


Comparison to other methods

As mentioned the analytic element method thus does not rely on the discretization of volume or area in the model, as in the finite elements or finite different methods. Thus, it can model complex problems with an error in the order of machine precision. This is illustrated in a study that modeled a highly heterogeneous, isotropic aquifer by including 100,000 spherical heterogeneity with a random conductivity and tracing 40,000 particles. The analytical element method can efficiently be used as verification or as a screening tool in larger projects as it may fast and accurately calculate the groundwater flow for many complex problems. In contrast to other commonly used groundwater modeling methods, e.g. the finite elements or finite different method, the AEM does not discrete the model domain into cells. This gives the advantage that the model is valid for any given point in the model domain. However, it also imposes that the domain is not as easily divided into regions of e.g. different hydraulic conductivity, as when modeling with a cell grid; however, one solution to this problem is to include subdomains to the AEM model. There also exist solutions for implementing vertically varying properties or structures in an aquifer in an AEM model.


See also

* Boundary element method *
Conformal map In mathematics, a conformal map is a function (mathematics), function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-prese ...
ping *
Superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So th ...


References


Further read

* * *


External links


Analytic elements community wiki

Fitts Geolsolutions, AnAqSim (analytic aquifer simulator) and AnAqSimEDU (free) web site
{{DEFAULTSORT:Analytic Element Method Numerical differential equations Hydrology models