Algorithmic cooling is an
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
ic method for transferring
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
(or
entropy
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
) from some
qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s to others
or outside the system and into the environment, which results in a cooling effect. This method uses regular
quantum operation
In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discusse ...
s on ensembles of qubits, and it can be shown that it can succeed beyond
Shannon's bound on data compression.
The phenomenon is a result of the connection between
thermodynamics and information theory.
The cooling itself is done in an algorithmic manner using ordinary quantum operations. The input is a set of qubits, and the output is a subset of qubits cooled to a desired threshold determined by the user. This cooling effect may have usages in initializing cold (highly
pure
Pure may refer to:
Computing
* A pure function
* A pure virtual function
* PureSystems, a family of computer systems introduced by IBM in 2012
* Pure Software, a company founded in 1991 by Reed Hastings to support the Purify tool
* Pure-FTPd, F ...
) qubits for
quantum computation
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
and in increasing polarization of certain spins in
nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
. Therefore, it can be used in the initializing process taking place before a regular quantum computation.
Overview
Quantum computers need
qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s (quantum bits) on which they operate. Generally, in order to make the computation more reliable, the qubits must be as
pure
Pure may refer to:
Computing
* A pure function
* A pure virtual function
* PureSystems, a family of computer systems introduced by IBM in 2012
* Pure Software, a company founded in 1991 by Reed Hastings to support the Purify tool
* Pure-FTPd, F ...
as possible, minimizing possible fluctuations. Since the purity of a qubit is related to
von Neumann entropy
In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ...
and to
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied o ...
, making the qubits as pure as possible is equivalent to making them as cold as possible (or having as little entropy as possible). One method of cooling qubits is extracting entropy from them, thus purifying them. This can be done in two general ways:
reversibly (namely, using
unitary operations) or
irreversibly (for example, using a
heat bath
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
). Algorithmic cooling is the name of a family of algorithms that are given a set of qubits and purify (cool) a subset of them to a desirable level.
This can also be viewed in a probabilistic manner. Since qubits are two-level systems, they can be regarded as coins,
unfair ones in general. Purifying a qubit means (in this context) making the coin as unfair as possible: increasing the difference between the probabilities for tossing different results as much as possible. Moreover, the entropy previously mentioned can be viewed using the prism of
information theory
Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
, which assigns entropy to any
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
. The purification can, therefore, be considered as using probabilistic operations (such as
classical logical gates and
conditional probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occur ...
) for minimizing the entropy of the coins, making them more unfair.
The case in which the algorithmic method is reversible, such that the total entropy of the system is not changed, was first named "molecular scale heat engine",
and is also named "reversible algorithmic cooling". This process cools some qubits while heating the others. It is limited by a variant of
Shannon's bound on data compression and it can
asymptotically
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
reach quite close to the bound.
A more general method, "irreversible algorithmic cooling", makes use of irreversible transfer of
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
outside of the system and into the environment (and therefore may bypass the Shannon bound). Such an environment can be a heat bath, and the family of algorithms which use it is named "heat-bath algorithmic cooling".
In this algorithmic process entropy is transferred reversibly to specific qubits (named reset spins) that are coupled with the environment much more strongly than others. After a sequence of reversible steps that let the entropy of these reset qubits increase they become hotter than the environment. Then the strong
coupling
A coupling is a device used to connect two shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join two pieces of rotating equipment while permitting some degree of misalignment or end mov ...
results in a heat transfer (irreversibly) from these reset spins to the environment. The entire process may be repeated and may be applied
recursively
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
to reach low temperatures for some qubits.
Background
Thermodynamics
Algorithmic cooling can be discussed using classical and quantum
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
points of view.
Cooling
The classical interpretation of "cooling" is transferring heat from one object to the other. However, the same process can be viewed as
entropy
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
transfer. For example, if two gas containers that are both in
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
with two different temperatures are put in contact, entropy will be transferred from the "hotter" object (with higher entropy) to the "colder" one. This approach can be used when discussing the cooling of an object whose
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied o ...
is not always intuitively defined, e.g. a single particle. Therefore, the process of cooling spins can be thought of as a process of transferring entropy between spins, or outside of the system.
Heat reservoir
The concept of
heat reservoir
A thermal reservoir, also thermal energy reservoir or thermal bath, is a thermodynamic system with a heat capacity so large that the temperature of the reservoir changes relatively little when a much more significant amount of heat is added or ex ...
is discussed extensively in classical thermodynamics (for instance in
Carnot cycle
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynam ...
). For the purposes of algorithmic cooling, it is sufficient to consider heat reservoirs, or "heat baths", as large objects whose temperature remains unchanged even when in contact with other ("normal" sized) objects. Intuitively, this can be pictured as a bath filled with room-temperature water that practically retains its temperature even when a small piece of hot metal is put in it.
Using the entropy form of thinking from the previous subsection, an object which is considered hot (whose entropy is large) can transfer heat (and entropy) to a colder heat bath, thus lowering its own entropy. This process results in cooling.
Unlike entropy transfer between two "regular" objects which preserves the entropy of the system, entropy transfer to a heat bath is normally regarded as non-preserving. This is because the bath is normally not considered as a part of the relevant system, due to its size. Therefore, when transferring entropy to a heat bath, one can essentially lower the entropy of their system, or equivalently, cool it. Continuing this approach, the goal of algorithmic cooling is to reduce as much as possible the entropy of the system of qubits, thus cooling it.
Quantum mechanics
General introduction
Algorithmic cooling applies to
quantum
In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
systems. Therefore, it is important to be familiar with both the core principles and the relevant notations.
A
qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
(or quantum
bit
The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represente ...
) is a unit of information that can be in a
superposition of two
states, denoted as
and
. The general superposition can be written as
where
and
. If one
measures
Measure may refer to:
* Measurement, the assignment of a number to a characteristic of an object or event
Law
* Ballot measure, proposed legislation in the United States
* Church of England Measure, legislation of the Church of England
* Meas ...
the state of the qubit in the
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
composed of
and
, one gets the result
with
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
and the result
with probability
.
The above description is known as a quantum
pure
Pure may refer to:
Computing
* A pure function
* A pure virtual function
* PureSystems, a family of computer systems introduced by IBM in 2012
* Pure Software, a company founded in 1991 by Reed Hastings to support the Purify tool
* Pure-FTPd, F ...
state. A general
mixed quantum state
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution i ...
can be prepared as a
probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
over pure states, and is represented by a
density matrix
In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using ...
of the general form
, where each
is a pure state (see
ket-bra notations) and each
is the probability of
in the distribution. The quantum states that play a major role in algorithmic cooling are mixed states in the
diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ ...
form
for