In
mathematics, the Adams spectral sequence is a
spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they hav ...
introduced by which computes the
stable homotopy groups of
topological spaces
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poi ...
. Like all spectral sequences, it is a computational tool; it relates
homology theory to what is now called
stable homotopy theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the ...
. It is a reformulation using
homological algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ...
, and an extension, of a technique called 'killing homotopy groups' applied by the French school of
Henri Cartan and
Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ...
.
Motivation
For everything below, once and for all, we fix a prime ''p''. All spaces are assumed to be
CW complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cla ...
es. The
ordinary
Ordinary or The Ordinary often refer to:
Music
* ''Ordinary'' (EP) (2015), by South Korean group Beast
* ''Ordinary'' (Every Little Thing album) (2011)
* "Ordinary" (Two Door Cinema Club song) (2016)
* "Ordinary" (Wayne Brady song) (2008)
* ...
cohomology group
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
s
are understood to mean
.
The primary goal of algebraic topology is to try to understand the collection of all maps, up to homotopy, between arbitrary spaces ''X'' and ''Y''. This is extraordinarily ambitious: in particular, when ''X'' is
, these maps form the ''n''th
homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homot ...
of ''Y''. A more reasonable (but still very difficult!) goal is to understand the set