ALDH6A1
   HOME

TheInfoList



OR:

Methylmalonate-semialdehyde dehydrogenase cylating mitochondrial (MMSDH) is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that in humans is encoded by the ''ALDH6A1''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. This protein belongs to the aldehyde dehydrogenases family of proteins. This enzyme plays a role in the valine and pyrimidine catabolic pathways. The product of this gene, a mitochondrial methylmalonate semialdehyde dehydrogenase, catalyzes the irreversible oxidative decarboxylation of malonate and methylmalonate semialdehydes to acetyl- and propionyl-CoA. Methylmalonate semialdehyde dehydrogenase deficiency is characterized by elevated beta-alanine, 3-hydroxypropionic acid, and both isomers of 3-amino and 3-hydroxyisobutyric acids in urine organic acids. Methylmalonate semialdehyde dehydrogenase deficiency is caused by mutations in this gene and the resulting protein.


Structure

The ALDH6A1 gene is mapped onto 14q24.3, between markers D14S71 and D14S986, and has an exon count of 12. The mRNA expression levels of this gene are highest in the kidney and liver, although mRNA levels have been found in many other tissues. The mature protein that this gene translates in humans is 503 amino acids long, which is similar to other enzymes of this family, which all comprise around 500 amino acids. This enzyme localizes to the mitochondria. Unlike other mitochondrial entry sequences, this does not contain as many arginine residues, and is in fact slightly longer.


Function

MMSDH has esterase activity, which is characteristic of the enzymes in the Aldehyde Dehydrogenase family. It is more specifically involved in the
valine Valine (symbol Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- carboxylic acid group (which is in the deproton ...
and
thymine Thymine () (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine ...
catabolism pathways. When the enzyme acts on valine, (S)-3-hydroxyisobutyric acid is generated as an intermediate; this then undergoes oxidation by the enzyme 3-hydroxyisobutyrate dehydrogenase to form (S)-methylmalonic semialdehyde (MMSA). In thymine catabolism, the enzymatic reaction produces (R)-aminoisobutyric acid (AIBA), which is then deaminated to (R)-methylmalonic semialdehyde. These two enantiomers of MMSA are substrates for MMSDH, which catalyzes their oxidative decarboxylation to propionyl-CoA. Both NAD+ and CoA act as cofactors with the enzyme, although they work in opposite directions; NAD+ works to protect the enzyme against proteolysis, but CoA esters diminish that effect.


Clinical significance

Mutations in the ALDH6A1 gene are associated with methylmalonate semialdehyde dehydrogenase deficiency, a rare autosomal recessive inborn error of metabolism with a highly variable phenotype. The disease is passed through autosomal recessive genetics. There have been many individual and familial case studies of this deficiency and the mutations that cause it. Some patients with this disease may be asymptomatic, whereas others show global developmental delay, nonspecific dysmorphic features, and delayed myelination on brain imaging. Meanwhile, some cases have been only identified through elevated levels of various acidic metabolites in the urine, notably 3-hydroxyisobutyric acid. This can result from an identified a homozygous 1336G-A transition in the gene, resulting in a change in the 446th residue from glycine to arginine. Another case study, a child from consanguineous patients, presented as significant hypotonia in infancy, poor feeding, and dysmorphic facial features, including narrowed, downslanting palpebral fissures, short convex nose with depressed nasal bridge, microphthalmia, cataracts, and adducted thumbs. Brain imaging showed delayed myelination and thinning of the corpus callosum. Laboratory studies showed 3-hydroxyisobutyric aciduria and mild lactic acidosis. Many case studies since then have presented similar symptoms, although the symptoms may be milder. The mutations identified are generally heterozygous missense mutations: S262Y, P62S, Y172H and R535C.


References


External links

*


Further reading

* * * * * {{Aldehyde dehydrogenases