3-center 4-electron Bond
   HOME

TheInfoList



OR:

The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain
hypervalent molecule In chemistry, a hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus ...
s such as tetratomic and hexatomic
interhalogen In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms (fluorine, chlorine, bromine, iodine, or astatine) and no atoms of elements from any other group. Most interhalogen compounds known are binar ...
compounds,
sulfur tetrafluoride Sulfur tetrafluoride is a chemical compound with the formula S F4. It is a colorless corrosive gas that releases dangerous hydrogen fluoride gas upon exposure to water or moisture. Sulfur tetrafluoride is a useful reagent for the preparation o ...
, the xenon fluorides, and the
bifluoride The bifluoride ion is an inorganic anion with the chemical formula . The anion is colorless. Salts of bifluoride are commonly encountered in the reactions of fluoride salts with hydrofluoric acid. The commercial production of fluorine involves ...
ion. It is also known as the Pimentel–Rundle three-center model after the work published by George C. Pimentel in 1951,Pimentel, G. C. The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. ''J. Chem. Phys.'' 1951, ''19'', 446-448. which built on concepts developed earlier by Robert E. Rundle for electron-deficient bonding.Rundle, R. E. Electron Deficient Compounds. II. Relative Energies of "Half-Bonds". ''J. Chem. Phys.'' 1949, ''17'', 671–675. An extended version of this model is used to describe the whole class of
hypervalent molecules In chemistry, a hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pe ...
such as
phosphorus pentafluoride Phosphorus pentafluoride is a chemical compound with the chemical formula . It is a phosphorus halide. It is a colourless, toxic gas that fumes in air. Preparation Phosphorus pentafluoride was first prepared in 1876 by the fluorination of phospho ...
and
sulfur hexafluoride Sulfur hexafluoride or sulphur hexafluoride ( British spelling) is an inorganic compound with the formula SF6. It is a colorless, odorless, non-flammable, and non-toxic gas. has an octahedral geometry, consisting of six fluorine atoms attache ...
as well as multi-center π-bonding such as
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
and
sulfur trioxide Sulfur trioxide (alternative spelling sulphur trioxide) is the chemical compound with the formula SO3. It has been described as "unquestionably the most conomicallyimportant sulfur oxide". It is prepared on an industrial scale as a precursor to ...
. There are also molecules such as
diborane Diborane(6), commonly known as diborane, is the chemical compound with the formula . It is a highly toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has att ...
(B2H6) and dialane (Al2H6) which have three-center two-electron (3c–2e) bonds.


History

While the term "hypervalent" was not introduced in the chemical literature until 1969,
Irving Langmuir Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and metallurgical engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry. Langmuir's most famous publicatio ...
and G. N. Lewis debated the nature of bonding in hypervalent molecules as early as 1921. While Lewis supported the viewpoint of expanded octet, invoking s-p-d hybridized orbitals and maintaining 2c–2e bonds between neighboring atoms, Langmuir instead opted for maintaining the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The ru ...
, invoking an ionic basis for bonding in hypervalent compounds (see
Hypervalent molecule In chemistry, a hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus ...
, valence bond theory diagrams for PF5 and SF6). In a 1951 seminal paper, Pimentel rationalized the bonding in hypervalent trihalide ions (, X = F, Br, Cl, I) via a molecular orbital (MO) description, building on the concept of the "half-bond" introduced by Rundle in 1947. In this model, two of the four electrons occupy an all in-phase bonding MO, while the other two occupy a non-bonding MO, leading to an overall bond order of 0.5 between adjacent atoms (see Molecular orbital description). More recent theoretical studies on hypervalent molecules support the Langmuir view, confirming that the octet rule serves as a good first approximation to describing bonding in the s- and p-block elements.


Examples of molecules exhibiting three-center four-electron bonding


σ 3c–4e

*
Triiodide In chemistry, triiodide usually refers to the triiodide ion, . This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine. Some salts of the anion have been ...
*
Xenon difluoride Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as th ...
*
Krypton difluoride Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances ...
*
Radon difluoride Radon difluoride () is a compound of radon, a radioactive noble gas. Radon reacts readily with fluorine to form a solid compound, but this decomposes on attempted vaporization and its exact composition is uncertain. Calculations suggest that it ...
*
Argon fluorohydride Argon fluorohydride (systematically named fluoridohydridoargon) or argon hydrofluoride is an inorganic compound with the chemical formula HArF (also written ArHF). It is a compound of the chemical element argon. Discovery The discovery of this ...
*
Bifluoride The bifluoride ion is an inorganic anion with the chemical formula . The anion is colorless. Salts of bifluoride are commonly encountered in the reactions of fluoride salts with hydrofluoric acid. The commercial production of fluorine involves ...
* SN2 reaction
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked w ...
and
activated complex In chemistry, an activated complex represents a collection of intermediate structures in a chemical reaction when bonds are breaking and forming. The activated complex is an arrangement of atoms in an arbitrary region near the saddle point ...
* Symmetric hydrogen bond


π 3c–4e

*
Carboxylate In organic chemistry, a carboxylate is the conjugate base of a carboxylic acid, (or ). It is an anion, an ion with negative charge. Carboxylate salts are salts that have the general formula , where M is a metal and ''n'' is 1, 2,... ...
s *
Amide In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a chemical compound, compound with the general formula , where R, R', and R″ represent any group, typically organyl functional group, groups or hydrogen at ...
s *
Ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
*
Azide In chemistry, azide (, ) is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant ...
* Allyl anion


Structure and bonding


Molecular orbital description

The σ
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding ...
s (MOs) of
triiodide In chemistry, triiodide usually refers to the triiodide ion, . This anion, one of the polyhalogen ions, is composed of three iodine atoms. It is formed by combining aqueous solutions of iodide salts and iodine. Some salts of the anion have been ...
can be constructed by considering the in-phase and out-of-phase combinations of the central atom's
p orbital In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
(collinear with the bond axis) with the p orbitals of the peripheral atoms. This exercise generates the diagram at right (Figure 1). Three molecular orbitals result from the combination of the three relevant atomic orbitals, with the four electrons occupying the two MOs lowest in energy – a bonding MO delocalized across all three centers, and a non-bonding MO localized on the peripheral centers. Using this model, one sidesteps the need to invoke hypervalent bonding considerations at the central atom, since the bonding orbital effectively consists of two 2-center-1-electron bonds (which together do not violate the octet rule), and the other two electrons occupy the non-bonding orbital.


Valence bond (natural bond orbital) description

In the
natural bond orbital In quantum chemistry, a natural bond orbital or NBO is a calculated ''bonding orbital'' with maximum electron density. The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid o ...
viewpoint of 3c–4e bonding, the triiodide anion is constructed from the combination of the diiodine (I2) σ molecular orbitals and an
iodide An iodide ion is I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine deficiency ...
(I) lone pair. The I lone pair acts as a 2-electron donor, while the I2 σ* antibonding orbital acts as a 2-electron acceptor. Combining the donor and acceptor in in-phase and out-of-phase combinations results in the diagram depicted at right (Figure 2). Combining the donor lone pair with the acceptor σ* antibonding orbital results in an overall lowering in energy of the highest-occupied orbital (ψ2). While the diagram depicted in Figure 2 shows the right-hand atom as the donor, an equivalent diagram can be constructed using the left-hand atom as the donor. This bonding scheme is succinctly summarized by the following two resonance structures: I—I···I ↔ I···I—I (where "—" represents a single bond and "···" represents a "dummy bond" with formal bond order 0 whose purpose is only to indicate connectivity), which when averaged reproduces the I—I bond order of 0.5 obtained both from natural bond orbital analysis and from molecular orbital theory. More recent theoretical investigations suggest the existence of a novel type of donor-acceptor interaction that may dominate in triatomic species with so-called "inverted electronegativity"; that is, a situation in which the central atom is more electronegative than the peripheral atoms. Molecules of theoretical curiosity such as neon difluoride (NeF2) and beryllium dilithide (BeLi2) represent examples of inverted electronegativity. As a result of unusual bonding situation, the donor lone pair ends up with significant electron density on the ''central'' atom, while the acceptor is the "out-of-phase" combination of the p orbitals on the peripheral atoms. This bonding scheme is depicted in Figure 3 for the theoretical noble gas dihalide NeF2.


SN2 transition state modeling

The valence bond description and accompanying resonance structures A—B···C ↔ A···B—C suggest that molecules exhibiting 3c–4e bonding can serve as models for studying the transition states of bimolecular nucleophilic substitution reactions.


See also

*
Hypervalent molecule In chemistry, a hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus ...
*
Three-center two-electron bond A three-center two-electron (3c–2e) bond is an electron-deficient chemical bond where three atoms share two electrons. The combination of three atomic orbitals form three molecular orbitals: one bonding, one ''non''-bonding, and one ''anti''- ...


References

{{Chemical bonds Chemical bonding