HOME
*





ω-consistent Theory
In mathematical logic, an ω-consistent (or omega-consistent, also called numerically segregative)W. V. O. Quine (1971), ''Set Theory and Its Logic''. theory is a theory (collection of sentences) that is not only (syntactically) consistent (that is, does not prove a contradiction), but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt Gödel, who introduced the concept in the course of proving the incompleteness theorem. Definition A theory ''T'' is said to interpret the language of arithmetic if there is a translation of formulas of arithmetic into the language of ''T'' so that ''T'' is able to prove the basic axioms of the natural numbers under this translation. A ''T'' that interprets arithmetic is ω-inconsistent if, for some property ''P'' of natural numbers (defined by a formula in the language of ''T''), ''T'' proves ''P''(0), ''P''(1), ''P''(2), and so on (that is, for every standard natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ω-logic
In set theory, Ω-logic is an infinitary logic and deductive system proposed by as part of an attempt to generalize the theory of determinacy of pointclasses to cover the structure H_. Just as the axiom of projective determinacy yields a canonical theory of H_, he sought to find axioms that would give a canonical theory for the larger structure. The theory he developed involves a controversial argument that the continuum hypothesis is false. Analysis Woodin's Ω-conjecture asserts that if there is a proper class of Woodin cardinals (for technical reasons, most results in the theory are most easily stated under this assumption), then Ω-logic satisfies an analogue of the completeness theorem. From this conjecture, it can be shown that, if there is any single axiom which is comprehensive over H_ (in Ω-logic), it must imply that the continuum is not \aleph_1. Woodin also isolated a specific axiom, a variation of Martin's maximum, which states that any Ω-consistent \Pi_2 (over H_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jon Barwise
Kenneth Jon Barwise (; June 29, 1942 – March 5, 2000) was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used. Education and career Born in Independence, Missouri to Kenneth T. and Evelyn Barwise, Jon was a precocious child. A pupil of Solomon Feferman at Stanford University, Barwise started his research in infinitary logic. After positions as assistant professor at Yale University and the University of Wisconsin, during which time his interests turned to natural language, he returned to Stanford in 1983 to direct the Center for the Study of Language and Information. He began teaching at Indiana University in 1990. He was elected a Fellow of the American Academy of Arts and Sciences in 1999. In his last year, Barwise was invited to give the 2000 Gödel Lecture; he died prior to the lecture. Philosophical and logical work Barwise contended that, by being explicit about the context in w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Martin Löb
Martin Hugo Löb (; 31 March 1921 – 21 August 2006) was a German mathematician. He settled in the United Kingdom after the Second World War and specialised in mathematical logic. He moved to the Netherlands in the 1970s, where he remained in retirement. He is perhaps best known for having formulated Löb's theorem in 1955. Early life and education Löb grew up in Berlin, but escaped from the Third Reich, arriving in the UK just before the outbreak of the Second World War. As an enemy alien, he was deported on the '' Dunera'' to an internment camp at Hay in Australia in 1940, where the 19-year-old Löb was taught mathematics by other internees. His teacher, Felix Behrend, was later a professor at Melbourne University. Löb was allowed to return to the UK in 1943, and he studied at the University of London after the War. After graduating, he became a research student with Reuben Goodstein at the University of Leicester. He completed his PhD and became an assistant lectur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Bernays
Paul Isaac Bernays (17 October 1888 – 18 September 1977) was a Swiss mathematician who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator of David Hilbert. Biography Bernays was born into a distinguished German-Jewish family of scholars and businessmen. His great-grandfather, Isaac ben Jacob Bernays, served as chief rabbi of Hamburg from 1821 to 1849. Bernays spent his childhood in Berlin, and attended the Köllner Gymnasium, 1895–1907. At the University of Berlin, he studied mathematics under Issai Schur, Edmund Landau, Ferdinand Georg Frobenius, and Friedrich Schottky; philosophy under Alois Riehl, Carl Stumpf and Ernst Cassirer; and physics under Max Planck. At the University of Göttingen, he studied mathematics under David Hilbert, Edmund Landau, Hermann Weyl, and Felix Klein; physics under Voigt and Max Born; and philosophy under Leonard Nelson. In 1912, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and ed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflection Principle
In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to , while stronger forms can be new and very powerful axioms for set theory. The name "reflection principle" comes from the fact that properties of the universe of all sets are "reflected" down to a smaller set. Motivation A naive version of the reflection principle states that "for any property of the universe of all sets we can find a set with the same property". This leads to an immediate contradiction: the universe of all sets contains all sets, but there is no set with the property that it contains all sets. To get useful (and non-contradictory) reflection principles we need to be more careful about what we mean by "property" and what properties we allow. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conservative Extension
In mathematical logic, a conservative extension is a supertheory of a theory which is often convenient for proving theorems, but proves no new theorems about the language of the original theory. Similarly, a non-conservative extension is a supertheory which is not conservative, and can prove more theorems than the original. More formally stated, a theory T_2 is a ( proof theoretic) conservative extension of a theory T_1 if every theorem of T_1 is a theorem of T_2, and any theorem of T_2 in the language of T_1 is already a theorem of T_1. More generally, if \Gamma is a set of formulas in the common language of T_1 and T_2, then T_2 is \Gamma-conservative over T_1 if every formula from \Gamma provable in T_2 is also provable in T_1. Note that a conservative extension of a consistent theory is consistent. If it were not, then by the principle of explosion, every formula in the language of T_2 would be a theorem of T_2, so every formula in the language of T_1 would be a theorem of T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logical Equivalence
In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. Logical equivalences In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. General logical equivalences Logical equivalences involving conditional statements :#p \implies q \equiv \neg p \vee q :#p \implies q \equiv \neg q \implies \neg p :#p \vee q \equiv \neg p \implies q :#p \wedge q \equiv \neg (p \implies \neg q) :#\neg (p \implies q) \equiv p \wedge \neg q :#(p \implies q) \wedge (p \impli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principle Of Explosion
In classical logic, intuitionistic logic and similar logical systems, the principle of explosion (, 'from falsehood, anything ollows; or ), or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, once a contradiction has been asserted, any proposition (including their negations) can be inferred from it; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Priest, Graham. 2011. "What's so bad about contradictions?" In ''The Law of Non-Contradicton'', edited by Priest, Beal, and Armour-Garb. Oxford: Clarendon Press. p. 25. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]