HOME
*





Totally Geodesic
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. * Connection * Curvature * Metric space * Riemannian manifold See also: * Glossary of general topology * Glossary of differential geometry and topology * List of differential geometry topics Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or , xy, _X denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary. ''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage. __NOTOC__ A Alexandrov space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radius (bone)
The radius or radial bone is one of the two large bones of the forearm, the other being the ulna. It extends from the lateral side of the elbow to the thumb side of the wrist and runs parallel to the ulna. The ulna is usually slightly longer than the radius, but the radius is thicker. Therefore the radius is considered to be the larger of the two. It is a long bone, prism-shaped and slightly curved longitudinally. The radius is part of two joints: the elbow and the wrist. At the elbow, it joins with the capitulum of the humerus, and in a separate region, with the ulna at the radial notch. At the wrist, the radius forms a joint with the ulna bone. The corresponding bone in the lower leg is the fibula. Structure The long narrow medullary cavity is enclosed in a strong wall of compact bone. It is thickest along the interosseous border and thinnest at the extremities, same over the cup-shaped articular surface (fovea) of the head. The trabeculae of the spongy ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CAT(0) Space
In mathematics, a \mathbf(k) space, where k is a real number, is a specific type of metric space. Intuitively, triangles in a \operatorname(k) space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature k. In a \operatorname(k) space, the curvature is bounded from above by k. A notable special case is k=0; complete \operatorname(0) spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard. Originally, Aleksandrov called these spaces “\mathfrak_k domain”. The terminology \operatorname(k) was coined by Mikhail Gromov in 1987 and is an acronym for Élie Cartan, Aleksandr Danilovich Aleksandrov and Victor Andreevich Toponogov (although Toponogov never explored curvature bounded above in publications). Definitions For a real number k, let M_k denote the unique complete simply connected surface (real 2-dimensional Riemannian manifold) with constant curvature k. Denote by D_k the diameter of M_k, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cotangent Bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or (in the form of cotangent sheaf) algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories. Formal Definition Let ''M'' be a smooth manifold and let ''M''×''M'' be the Cartesian product of ''M'' with itself. The diagonal mapping Δ sends a point ''p'' in ''M'' to the point (''p'',''p'') of ''M''×''M''. The image of Δ is called the diagonal. Let \mathcal be the sheaf of germs of smooth functions on ''M''×''M'' which vanish on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Function
In mathematics, a real-valued function is called convex if the line segment between any two points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include the quadratic function x^2 and the exponential function e^x. In simple terms, a convex function refers to a function whose graph is shaped like a cup \cup, while a concave function's graph is shaped like a cap \cap. Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geodesic Convexity
In mathematics — specifically, in Riemannian geometry — geodesic convexity is a natural generalization of convexity for sets and functions to Riemannian manifolds. It is common to drop the prefix "geodesic" and refer simply to "convexity" of a set or function. Definitions Let (''M'', ''g'') be a Riemannian manifold. * A subset ''C'' of ''M'' is said to be a geodesically convex set if, given any two points in ''C'', there is a unique minimizing geodesic contained within ''C'' that joins those two points. * Let ''C'' be a geodesically convex subset of ''M''. A function f:C\to\mathbf is said to be a (strictly) geodesically convex function if the composition ::f \circ \gamma : , T\to \mathbf : is a (strictly) convex function in the usual sense for every unit speed geodesic arc ''γ'' :  , ''T''nbsp;→ ''M'' contained within ''C''. Properties * A geodesically convex (subset of a) Riemannian manifold is also a convex metric space w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjugate Points
In differential geometry, conjugate points or focal points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing. All geodesics are ''locally'' length-minimizing, but not globally. For example on a sphere, any geodesic passing through the north-pole can be extended to reach the south-pole, and hence any geodesic segment connecting the poles is not (uniquely) ''globally'' length minimizing. This tells us that any pair of antipodal points on the standard 2-sphere are conjugate points.Cheeger, Ebin. ''Comparison Theorems in Riemannian Geometry''. North-Holland Publishing Company, 1975, pp. 17-18. Definition Suppose ''p'' and ''q'' are points on a Riemannian manifold, and \gamma is a geodesic that connects ''p'' and ''q''. Then ''p'' and ''q'' are conjugate points along ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conformal Map
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in U if it preserves angles between directed curves through u_0, as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature. The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix. For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collapsing Manifold
In Riemannian geometry, a collapsing or collapsed manifold is an ''n''-dimensional manifold ''M'' that admits a sequence of Riemannian metrics ''g''''i'', such that as ''i'' goes to infinity the manifold is close to a ''k''-dimensional space, where ''k'' < ''n'', in the Gromov–Hausdorff distance sense. Generally there are some restrictions on the s of (''M'', ''g''''i''). The simplest example is a flat manifold, whose metric can be rescaled by 1/''i'', so that the manifold is close to a point, but its curvature remains 0 for all ''i''.


Examples

Generally speaking ther ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christoffel Symbol
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated ( orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torsion (differential Geometry)
In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves (or rather the rotation of the Frenet–Serret frame about the tangent vector). In the geometry of surfaces, the ''geodesic torsion'' describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting". More generally, on a differentiable manifold equipped with an affine connection (that is, a connection in the tangent bundle), torsion and curvature form the two fundamental invariants of the connection. In this context, torsion gives an intrinsic characterization of how tangent spaces twist about a curve when they are parallel transported; whereas curvature describes how the tangent spaces r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]