Threshold Graph
   HOME
*





Threshold Graph
In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: # Addition of a single isolated vertex to the graph. # Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices. For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered. Threshold graphs were first introduced by . A chapter on threshold graphs appears in , and the book is devoted to them. Alternative definitions An equivalent definition is the following: a graph is a threshold graph if there are a real number S and for each vertex v a real vertex weight w(v) such that for any two vertices v,u, uv is an edge if and only if w(u)+w(v)> S. Another equivalent definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Threshold Graph
In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: # Addition of a single isolated vertex to the graph. # Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices. For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered. Threshold graphs were first introduced by . A chapter on threshold graphs appears in , and the book is devoted to them. Alternative definitions An equivalent definition is the following: a graph is a threshold graph if there are a real number S and for each vertex v a real vertex weight w(v) such that for any two vertices v,u, uv is an edge if and only if w(u)+w(v)> S. Another equivalent definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matching (graph Theory)
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem. Definitions Given a graph a matching ''M'' in ''G'' is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching ''M'' of a graph ''G'' that is not a subset of any other matching. A matching ''M'' of a graph ''G'' is maximal if every edge in ''G'' has a non-empty intersection with at least one edge in ''M''. The following figure shows examples of maximal matchings (red) in three graphs. : A maximum matching (also known as maximum-cardinality matching) is a matching that contains the largest possible number of edges. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Series–parallel Graph
In graph theory, series–parallel graphs are graphs with two distinguished vertices called ''terminals'', formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits. Definition and terminology In this context, the term graph means multigraph. There are several ways to define series–parallel graphs. The following definition basically follows the one used by David Eppstein. A two-terminal graph (TTG) is a graph with two distinguished vertices, ''s'' and ''t'' called ''source'' and ''sink'', respectively. The parallel composition ''Pc = Pc(X,Y)'' of two TTGs ''X'' and ''Y'' is a TTG created from the disjoint union of graphs ''X'' and ''Y'' by merging the sources of ''X'' and ''Y'' to create the source of ''Pc'' and merging the sinks of ''X'' and ''Y'' to create the sink of ''Pc''. The series composition ''Sc = Sc(X,Y)'' of two TTGs ''X'' and ''Y'' is a TTG created from the disjoint union of graphs ''X'' and ''Y'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Indifference Graph
In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other.. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs. Equivalent characterizations The finite indifference graphs may be equivalently characterized as *The intersection graphs of unit intervals, *The intersection graphs of sets of intervals no two of which are nested (one containing the other),. *The claw-free interval graphs, *The graphs that do not have an induced subgraph isomorphic to a claw ''K''1,3, net (a triangle with a degree-one vertex adjacent to each of the tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Interval Graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs. They can be recognized in linear time, and an optimal graph coloring or maximum clique in these graphs can be found in linear time. The interval graphs include all proper interval graphs, graphs defined in the same way from a set of unit intervals. These graphs have been used to model food webs, and to study scheduling problems in which one must select a subset of tasks to be performed at non-overlapping times. Other applications include assembling contiguous subsequences in DNA mapping, and temporal reasoning. Definition An interval graph is an undirected graph formed from a family of intervals :S_i,\quad i=0,1,2,\dots by creating one vertex for each interval , and connecting two ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement Graph
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.. The complement is not the set complement of the graph; only the edges are complemented. Definition Let be a simple graph and let consist of all 2-element subsets of . Then is the complement of , where is the relative complement of in . For directed graphs, the complement can be defined in the same way, as a directed graph on the same vertex set, using the set of all 2-element ordered pairs of in place of the set in the formula above. In terms of the adjacency matrix ''A'' of the graph, if ''Q'' is the adjacency matrix of the complete graph of the same number of vertices (i.e. all entries are unity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trivially Perfect Graph
In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs. Equivalent characterizations Trivially perfect graphs have several other equivalent characterizations: *They are the comparability graphs of order-theoretic trees. That is, let be a partial order such that for each , the set is well-ordered by the relation , and also possesses a minimum element . Then the comparability graph of is trivially perfect, and every trivially perfect graph can be formed in this way. *They are the graphs that do not have a path graph or a cycle graph as induced su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Split Graph
In graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by , and independently introduced by . A split graph may have more than one partition into a clique and an independent set; for instance, the path is a split graph, the vertices of which can be partitioned in three different ways: #the clique and the independent set #the clique and the independent set #the clique and the independent set Split graphs can be characterized in terms of their forbidden induced subgraphs: a graph is split if and only if no induced subgraph is a cycle on four or five vertices, or a pair of disjoint edges (the complement of a 4-cycle). Relation to other graph families From the definition, split graphs are clearly closed under complementation. Another characterization of split graphs involves complementation: they are chordal graphs the complements of which are al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Path Graph
In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order such that the edges are where . Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). As Dynkin diagrams In algebra, path graphs appear as the Dynkin diagrams of type A. As such, they classify the root system of type A and the Weyl group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]