HOME
*





Test-and-set
In computer science, the test-and-set instruction is an instruction used to write (set) 1 to a memory location and return its old value as a single atomic (i.e., non-interruptible) operation. The caller can then "test" the result to see if the state was changed by the call. If multiple processes may access the same memory location, and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process's test-and-set is finished. A CPU may use a test-and-set instruction offered by another electronic component, such as dual-port RAM; a CPU itself may also offer a test-and-set instruction. A lock can be built using an atomic test-and-set instruction as follows: This code assumes that the memory location was initialized to 0 at some point prior to the first test-and-set. The calling process obtains the lock if the old value was 0, otherwise the while-loop spins waiting to acquire the lock. This is called a spinlock. At any po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Test-and-set
In computer science, the test-and-set instruction is an instruction used to write (set) 1 to a memory location and return its old value as a single atomic (i.e., non-interruptible) operation. The caller can then "test" the result to see if the state was changed by the call. If multiple processes may access the same memory location, and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process's test-and-set is finished. A CPU may use a test-and-set instruction offered by another electronic component, such as dual-port RAM; a CPU itself may also offer a test-and-set instruction. A lock can be built using an atomic test-and-set instruction as follows: This code assumes that the memory location was initialized to 0 at some point prior to the first test-and-set. The calling process obtains the lock if the old value was 0, otherwise the while-loop spins waiting to acquire the lock. This is called a spinlock. At any po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Test And Test-and-set
In computer science, the test-and-set CPU instruction is used to implement mutual exclusion in multiprocessor environments. Although a correct lock can be implemented with test-and-set, it can lead to resource contention in busy lock (caused by bus locking and cache invalidation when test-and-set operation needs to access memory atomically). To lower the overhead a more elaborate locking protocol test and test-and-set is used. Given a lock: ''boolean'' locked := false ''// shared lock variable'' Entry protocol is: procedure EnterCritical() Exit protocol is: procedure ExitCritical() The entry protocol uses normal memory reads to wait for the lock to become free. Test-and-set is only used to try to get the lock when normal memory read says it's free. Thus the expensive atomic memory operations happen less often than in a simple spin around test-and-set. If the programming language used supports short-circuit evaluation, the entry protocol could be implemented as: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spinlock
In software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on (the one that holds the lock) blocks or "goes to sleep". Because they avoid overhead from operating system process rescheduling or context switching, spinlocks are efficient if threads are likely to be blocked for only short periods. For this reason, operating-system kernels often use spinlocks. However, spinlocks become wasteful if held for longer durations, as they may prevent other threads from running and require rescheduling. The longer a thread holds a lock, the greater the risk that the thread will be i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutual Exclusion
In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory. The shared resource is a data object, which two or more concurrent threads are trying to modify (where two concurrent read operations are permitted but, no two concurrent write operations or one read and one write are permitted, since it leads to data inconsistency). Mutual exclusion algorithm ensures that if a process is already performing write operation on a data object ritical sectionno other process/thread is allowed to access/modify the same object until the first process has finished writing upon the data object ritical sectionand released the object f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compare-and-swap
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value. This is done as a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-date information; if the value had been updated by another thread in the meantime, the write would fail. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (''not'' the value written to it). Overview A compare-and-swap operation is an atomic version of the following pseudocode, where denotes access through a pointer: function cas(p: pointer to int, old: int, new: int) is if *p ≠ old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consensus (computer Science)
A fundamental problem in distributed computing and multi-agent systems is to achieve overall system reliability in the presence of a number of faulty processes. This often requires coordinating processes to reach consensus, or agree on some data value that is needed during computation. Example applications of consensus include agreeing on what transactions to commit to a database in which order, state machine replication, and atomic broadcasts. Real-world applications often requiring consensus include cloud computing, clock synchronization, PageRank, opinion formation, smart power grids, state estimation, control of UAVs (and multiple robots/agents in general), load balancing, blockchain, and others. Problem description The consensus problem requires agreement among a number of processes (or agents) for a single data value. Some of the processes (agents) may fail or be unreliable in other ways, so consensus protocols must be fault tolerant or resilient. The processes must some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compare-and-swap
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value. This is done as a single atomic operation. The atomicity guarantees that the new value is calculated based on up-to-date information; if the value had been updated by another thread in the meantime, the write would fail. The result of the operation must indicate whether it performed the substitution; this can be done either with a simple boolean response (this variant is often called compare-and-set), or by returning the value read from the memory location (''not'' the value written to it). Overview A compare-and-swap operation is an atomic version of the following pseudocode, where denotes access through a pointer: function cas(p: pointer to int, old: int, new: int) is if *p ≠ old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fetch-and-add
In computer science, the fetch-and-add CPU instruction (FAA) atomically increments the contents of a memory location by a specified value. That is, fetch-and-add performs the operation :increment the value at address by , where is a memory location and is some value, and return the original value at in such a way that if this operation is executed by one process in a concurrent system, no other process will ever see an intermediate result. Fetch-and-add can be used to implement concurrency control structures such as mutex locks and semaphores. Overview The motivation for having an atomic fetch-and-add is that operations that appear in programming languages as : are not safe in a concurrent system, where multiple processes or threads are running concurrently (either in a multi-processor system, or preemptively scheduled onto some single-core systems). The reason is that such an operation is actually implemented as multiple machine instructions: # load into a register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic (computer Science)
In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events (event), that may be extended by adding response events such that: # The extended list can be re-expressed as a sequential history (is serializable). # That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return. In a concurrent system, processes can access a shared object at the same time. Because multiple processes are accessing a single object, there may arise a situation in which while one process is accessing the object, another process changes its contents. Making a system linearizable is one solution to this problem. In a linearizable system, although operations overlap on a shared object, each operation appears to take place ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Critical Section
In concurrent programming, concurrent accesses to shared resources can lead to unexpected or erroneous behavior, so parts of the program where the shared resource is accessed need to be protected in ways that avoid the concurrent access. One way to do so is known as a critical section or critical region. This protected section cannot be entered by more than one process or thread at a time; others are suspended until the first leaves the critical section. Typically, the critical section accesses a shared resource, such as a data structure, a peripheral device, or a network connection, that would not operate correctly in the context of multiple concurrent accesses. Need for critical sections Different codes or processes may consist of the same variable or other resources that need to be read or written but whose results depend on the order in which the actions occur. For example, if a variable is to be read by process A, and process B has to write to the same variable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yehuda Afek
Yehuda Afek (Hebrew: יהודה אפק; September 1952) is an Israeli computer scientist at Tel Aviv University, and is known for his work on network cyber security and fault tolerant distributed computing. Yehuda cofounded Riverhead Networks in 2000, and was the head of the School of Computer Science in Tel Aviv University in 2014–2016. Biography Afek was born in Haifa in 1952 to Holocaust survivor parentsMiriamand Menachem Pinkhof) who were among the founders of the Dutch underground Westerweel Group who saved over 300 Jewish youths during the Holocaust until they were captured by the Nazis. They both received the Jewish holocaust rescuer Medal. Afek studied at the Hebrew Reali School in Haifa, and in 1970 enlisted in the IDF where he served as a fighter in a special elite operations unit (Sayeret Matkal), a service that was extended due to the Yom Kippur War. In 1978 he earned a bachelor's degree in electrical engineering at the Technion. In 1978-1980 he worked as an IDF ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]