Triply Periodic Minimal Surface
In differential geometry, a triply periodic minimal surface (TPMS) is a minimal surface in ℝ3 that is invariant under a rank-3 lattice of translations. These surfaces have the symmetries of a crystallographic group. Numerous examples are known with cubic, tetragonal, rhombohedral, and orthorhombic symmetries. Monoclinic and triclinic examples are certain to exist, but have proven hard to parametrise. TPMS are of relevance in natural science. TPMS have been observed as biological membranes, as block copolymers, equipotential surfaces in crystals etc. They have also been of interest in architecture, design and art. Properties Nearly all studied TPMS are free of self-intersections (i.e. embedded in ℝ3): from a mathematical standpoint they are the most interesting (since self-intersecting surfaces are trivially abundant). All connected TPMS have genus ≥ 3, and in every lattice there exist orientable embedded TPMS of every genus ≥3. Embedded TPMS are orientable and divi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schwarz H Surface
{{disambiguation ...
Schwarz may refer to: * Schwarz, Germany, a municipality in Mecklenburg-Vorpommern, Germany * Schwarz (surname), a surname (and list of people with the surname) * Schwarz (musician), American DJ and producer * ''Schwarz'' (Böhse Onkelz album), released simultaneously with ''Weiß'', 1993 * ''Schwarz'' (Conrad Schnitzler album), a reissue of the 1971 Kluster album ''Eruption'' * Schwarz (cards), in some card games, a Schneider (low point score) in which no tricks are taken * Schwarz Gruppe, a multinational retail group * Schwarz Pharma, a German drug company See also * * * Schwartz (other) * Schwarzhorn (other) * Swartz (other) Swartz may refer to: ;Places * Swartz, Louisiana * Swartz Creek (other) *Swartz Bay, British Columbia on the north end of the Saanich Peninsula on Vancouver Island **Swartz Bay Ferry Terminal * Swartz Nunataks, in Antarctica ;People * Swa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schwarz Minimal Surface
In differential geometry, the Schwarz minimal surfaces are periodic minimal surfaces originally described by Hermann Schwarz. In the 1880s Schwarz and his student E. R. Neovius described periodic minimal surfaces. They were later named by Alan Schoen in his seminal report that described the gyroid and other triply periodic minimal surfaces. The surfaces were generated using symmetry arguments: given a solution to Plateau's problem for a polygon, reflections of the surface across the boundary lines also produce valid minimal surfaces that can be continuously joined to the original solution. If a minimal surface meets a plane at right angles, then the mirror image in the plane can also be joined to the surface. Hence given a suitable initial polygon inscribed in a unit cell periodic surfaces can be constructed. The Schwarz surfaces have topological genus 3, the minimal genus of triply periodic minimal surfaces. They have been considered as models for periodic nanostr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasicrystal
A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders—for instance, five-fold. Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the field of crystallography. In crystallography the quasicrystals were predicted in 1981 by a five-fold symmetry study of Alan Lindsay Mackay,—that also brought in 1982, with the crystallographic Fourier transform of a Penrose tiling,Alan L. Mackay, "Crystall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasiperiodic
Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. The mathematical definition of quasiperiodic function is a completely different concept; the two should not be confused. Climatology Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called ''quasiperiodic''. Within a dynamical system such as the ocean-atmosphere oscillations may occur regularly, when they are forced by a regular external forcing: for example, the familiar winter-summer cycle is forced by variations in sunlight from the (very close to perfectly) periodic motion of the earth a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joan Hutchinson
Joan Prince Hutchinson (born 1945) is an American mathematician and Professor Emerita of Mathematics from Macalester College. Education Joan Hutchinson was born in Philadelphia, Pennsylvania; her father was a demographer and university professor, and her mother a mathematics teacher at the Baldwin School, which Joan also attended. She studied at Smith College in Northampton, Massachusetts, graduating in 1967 summa cum laude with an honors paper directed by Prof. Alice Dickinson. After graduation she worked as a computer programmer at the Woods Hole Oceanographic Institute and at the Harvard University Computing Center then studied mathematics (and English change ringing on tower bells) at the University of Warwick in Coventry England. Returning to the United States, Hutchinson did graduate work at the University of Pennsylvania earning a Ph.D. in mathematics in 1973 under the supervision of Herbert S. Wilf. Career She was a John Wesley Young research instructor at Dartmouth Coll ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gerhard Huisken Gerhard Huisken (born 20 May 1958) is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penr |