Thin Set (analysis)
In mathematical analysis, a thin set is a subset of ''n''-dimensional Complex coordinate space, complex space C''n'' with the property that each point has a neighbourhood (topology), neighbourhood on which some non-zero holomorphic function vanishes. Since the set on which a holomorphic function vanishes is closed set, closed and has empty Interior (topology), interior (by the Identity theorem), a thin set is nowhere dense, and the Closure (topology), closure of a thin set is also thin. The Fine topology (potential theory), fine topology was introduced in 1940 by Henri Cartan to aid in the study of thin sets. References * {{mathanalysis-stub Several complex variables ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Coordinate Space
In mathematics, the ''n''-dimensional complex coordinate space (or complex ''n''-space) is the set of all ordered ''n''-tuples of complex numbers. It is denoted \Complex^n, and is the ''n''-fold Cartesian product of the complex plane \Complex with itself. Symbolically, \Complex^n = \left\ or \Complex^n = \underbrace_. The variables z_i are the (complex) coordinates on the complex ''n''-space. Complex coordinate space is a vector space over the complex numbers, with componentwise addition and scalar multiplication. The real and imaginary parts of the coordinates set up a bijection of \Complex^n with the 2''n''-dimensional real coordinate space, \mathbb R^. With the standard Euclidean topology, \Complex^n is a topological vector space over the complex numbers. A function on an open subset of complex ''n''-space is holomorphic if it is holomorphic in each complex coordinate separately. Several complex variables is the study of such holomorphic functions in ''n'' variables ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neighbourhood (topology)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interior (topology)
In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of the closure of the complement of . In this sense interior and closure are dual notions. The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). Definitions Interior point If is a subset of a Euclidean space, then is an interior point of if there exists an open ball centered at which is completely contained in . (This is illustrated in the introductory section to this article.) This definition generalizes to any subset of a metric space with metric : is an interior point of if there exists r > 0, such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Identity Theorem
In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions ''f'' and ''g'' analytic on a domain ''D'' (open and connected subset of \mathbb or \mathbb), if ''f'' = ''g'' on some S \subseteq D, where S has an accumulation point, then ''f'' = ''g'' on ''D''. Thus an analytic function is completely determined by its values on a single open neighborhood in ''D'', or even a countable subset of ''D'' (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft"). The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series. The connectednes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nowhere Dense
In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas an open ball is not. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the Baire category theorem, which is used in the proof of several fundamental result of functional analysis. Definition Density nowhere can be characterized in different (but equivalent) ways. The simplest definition is the one from density: A subset S of a topological space X is said to be ''dense'' in another set U if the intersection S \cap U is a dense subset of U. S is or in X if S is not dense in any nonempty open subset U of X. Expanding out the negation of density, it is equivalent to require that each nonempty o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closure (topology)
In topology, the closure of a subset of points in a topological space consists of all points in together with all limit points of . The closure of may equivalently be defined as the union of and its boundary, and also as the intersection of all closed sets containing . Intuitively, the closure can be thought of as all the points that are either in or "near" . A point which is in the closure of is a point of closure of . The notion of closure is in many ways dual to the notion of interior. Definitions Point of closure For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r > 0 there exists some s \in S such that the distance d(x, s) < r ( is allowed). Another way to express this i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fine Topology (potential Theory)
In mathematics, in the field of potential theory, the fine topology is a natural topology for setting the study of subharmonic functions. In the earliest studies of subharmonic functions, namely those for which \Delta u \ge 0, where \Delta is the Laplacian, only smooth functions were considered. In that case it was natural to consider only the Euclidean topology, but with the advent of upper semi-continuous subharmonic functions introduced by F. Riesz, the fine topology became the more natural tool in many situations. Definition The fine topology on the Euclidean space \R^n is defined to be the coarsest topology making all subharmonic functions (equivalently all superharmonic functions) continuous. Concepts in the fine topology are normally prefixed with the word 'fine' to distinguish them from the corresponding concepts in the usual topology, as for example 'fine neighbourhood' or 'fine continuous'. Observations The fine topology was introduced in 1940 by Henri Cartan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Cartan
Henri Paul Cartan (; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer , physicist and mathematician , and the son-in-law of physicist Pierre Weiss. Life According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family. He moved to Paris with his family after his father's appointment at Sorbonne in 1909 and he attended secondary school at Lycée Hoche in Versailles. available also at In 1923 he started studying mathematics at École Normale Supérieure, receiving an agrégation in 1926 and a doctorate in 1928. His PhD thesis, entitled ''Sur les systèmes de fonctions holomorphes a variétés linéaires lacunaires et leurs applications'', was supervised by Paul Montel. Cartan taught at Lycée Malherbe in Caen from 1928 to 192 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |