Tachyon Condensation
Tachyon condensation is a process in particle physics in which a system can lower its potential energy by spontaneously producing particles. The end result is a "condensate" of particles that fills the volume of the system. Tachyon condensation is closely related to second-order phase transitions. Technical overview Tachyon condensation is a process in which a tachyonic field—usually a Scalar field theory, scalar field—with a complex number, complex mass acquires a vacuum expectation value and reaches the minimum of the potential energy. While the field is tachyonic and unstable near the local maximum of the potential, the field gets a non-negative squared mass and becomes stable near the minimum. The appearance of tachyons is a potentially serious problem for any theory; examples of tachyonic fields amenable to condensation are all cases of spontaneous symmetry breaking. In condensed matter physics a notable example is ferromagnetism; in particle physics the best known ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quark, Quarks cannot exist on their own but form hadrons. Hadrons that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Causality
Causality is an influence by which one Event (philosophy), event, process, state, or Object (philosophy), object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cause is at least partly responsible for the effect, and the effect is at least partly dependent on the cause. The cause of something may also be described as the reason for the event or process. In general, a process can have multiple causes,Compare: which are also said to be ''causal factors'' for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysics , metaphysically prior to notions of time and space. Causality is an abstraction that indicates how the world progresses. As such it is a basic concept; it is more apt to be an explanation of other concepts of progression than something to be explained by other more fun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaugino Condensation
In quantum field theory, gaugino condensation is the nonzero vacuum expectation value in some models of a bilinear expression constructed in theories with supersymmetry from the superpartner of a gauge boson called the gaugino. The gaugino and the bosonic gauge field and the D-term are all components of a supersymmetric vector superfield in the Wess–Zumino gauge. : \langle \lambda^a_\alpha \lambda^b_\beta\rangle \sim \delta^\epsilon_\Lambda^3 where \lambda represents the gaugino field (a spinor) and \Lambda is an energy scale, and represent Lie algebra indices and and represent van der Waerden (two component spinor) indices. The mechanism is somewhat analogous to chiral symmetry breaking and is an example of a fermionic condensate. In the superfield notation, W_\alpha \equiv \overline^2 D_\alpha V is the gauge field strength and is a chiral superfield. : \langle W^a_\alpha W^b_\beta \rangle = \langle \lambda^a_\alpha \lambda^b_\beta\rangle \sim \delta^\epsilon_\La ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bose–Einstein Condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einstein condensate, absolute zero, i.e. . Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic Quantum mechanics, quantum-mechanical phenomena, particularly wave interference#Quantum interference, wavefunction interference, become apparent Macroscopic quantum phenomena, macroscopically. More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter. Bose–Einstein condensate was first predicted, generally, in 1924–1925 by Albert Einstein, credit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bosonic String Theory
Bosonic string theory is the original version of string theory, developed in the late 1960s. It is so called because it contains only bosons in the spectrum. In the 1980s, supersymmetry was discovered in the context of string theory, and a new version of string theory called superstring theory (supersymmetric string theory) became the real focus. Nevertheless, bosonic string theory remains a very useful model to understand many general features of perturbative string theory, and many theoretical difficulties of superstrings can actually already be found in the context of bosonic strings. Problems Although bosonic string theory has many attractive features, it falls short as a viable physical model in two significant areas. First, it predicts only the existence of bosons whereas many physical particles are fermions. Second, it predicts the existence of a mode of the string with imaginary mass, implying that the theory has an instability to a process known as "tachyon conde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eva Silverstein
Eva Silverstein (born October 24, 1970) is an American theoretical physicist, cosmologist, and string theorist. She is a professor of physics at Stanford University and director of the Modern Inflationary Cosmology collaboration within the Simons Foundation Origins of the Universe initiative. Life, education, and work Raised in Spokane, Washington, Silverstein is the daughter of Harry S. and Lorinda Knight Silverstein and graduated from Lewis and Clark High School. Her father is a professor emeritus of philosophy at Washington State University in Pullman. Silverstein earned her bachelor's degree in physics from Harvard University in 1992 and her doctoral degree from Princeton University four years later. Silverstein's primary research areas include cosmic inflation, namely the creation of predictive and testable new mechanisms which have enabled systematic understanding of the process and the role of ultraviolet-sensitive qualities in observational cosmology (including str ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joseph Polchinski
Joseph Gerard Polchinski Jr. (; May 16, 1954 – February 2, 2018) was an American theoretical physicist and string theorist. Biography Polchinski was born in White Plains, New York, the elder of two children to Joseph Gerard Polchinski Sr. (1929–2002), a financial consultant and manager, and Joan (née Thornton), an office worker and homemaker. Polchinski was primarily of Irish descent with his paternal grandfather being Polish. Polchinski graduated from Canyon del Oro High School in Tucson, Arizona, in 1971. He obtained his B.S. degree from Caltech in 1975, and his Ph.D. from the University of California, Berkeley, in 1980 under the supervision of Stanley Mandelstam. He did not publish any papers as a graduate student. After postdoctoral positions at SLAC (1980–82) and Harvard (1982–84) he was a professor at the University of Texas at Austin from 1984 to 1992. From 1992 to March 2017 he was a professor in the Physics Department at the University of California, Santa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String Field Theory
String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space. The principal advantages of the formalism are that it allows the computation of off-shell amplitudes and, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string acts like a particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and condensed matter ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
D-branes
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open string (physics), strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimension, which is indicated by a number written after the ''D.'' A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(−1)-branes, which are localized in both space and time. Discovery D-branes were discovered by Jin Dai, Robert Leigh (physicist), Robert Leigh, and Joseph Polchinski, and independently by Petr Hořava (physicist), Petr Hořava, in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution, second superstring revolution and led to both Holographic pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Open String (physics)
In physics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity. Overview In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry (these five are known as superstring theories) and two versions without supersymmetry known as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ashoke Sen
Ashoke Sen FRS (; born 1956) is an Indian theoretical physicist and distinguished professor at the International Centre for Theoretical Sciences (ICTS), Bangalore. A former distinguished professor at the Harish-Chandra Research Institute, Prayagraj, He is also an honorary fellow in National Institute of Science Education and Research (NISER) India. He is also a Morningstar Visiting professor at MIT and a distinguished professor at the Korea Institute for Advanced Study. His main area of work is string theory. He was among the first recipients of the Breakthrough Prize in Fundamental Physics "for opening the path to the realization that all string theories are different limits of the same underlying theory". Early life He was born on 15 July 1956 in Kolkata, and is the elder son of Anil Kumar Sen, a former professor of physics at the Scottish Church College, Kolkata, and Gouri Sen, a homemaker. After completing his schooling from Sailendra Sircar Vidyalaya in Kolkata, he ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |