Square-lattice Ising Model
   HOME



picture info

Square-lattice Ising Model
In statistical mechanics, the two-dimensional square lattice Ising model is a simple lattice model (physics), lattice model of interacting magnetic spins, an example of the class of Ising models. The model is notable for having nontrivial interactions, yet having an analytical solution. The model was solved by Lars Onsager for the special case that the external magnetic field ''H'' = 0. An analytical solution for the general case for H \neq 0 has yet to be found. Defining the partition function Consider a 2D Ising model on a square lattice \Lambda with ''N'' sites and periodic boundary conditions in both the horizontal and vertical directions, which effectively reduces the topology of the model to a torus. Generally, the horizontal coupling J and the vertical coupling J^* are not equal. With \textstyle \beta = \frac and absolute temperature T and the Boltzmann constant k, the partition function (statistical mechanics), partition function : Z_N(K \equiv \beta J, L \equiv \beta J^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in a wide variety of fields such as biology, neuroscience, computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ..., information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kramers–Wannier Duality
The Kramers–Wannier duality is a symmetry in statistical physics. It relates the free energy of a two-dimensional square-lattice Ising model at a low temperature to that of another Ising model at a high temperature. It was discovered by Hendrik Kramers and Gregory Wannier in 1941. With the aid of this duality Kramers and Wannier found the exact location of the critical point for the Ising model on the square lattice. Similar dualities establish relations between free energies of other statistical models. For instance, in 3 dimensions the Ising model is dual to an Ising gauge model. Intuitive idea The 2-dimensional Ising model exists on a lattice, which is a collection of squares in a chessboard pattern. With the finite lattice, the edges can be connected to form a torus. In theories of this kind, one constructs an involutive transform. For instance, Lars Onsager suggested that the Star-Triangle transformation could be used for the triangular lattice. Now the dual o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in a wide variety of fields such as biology, neuroscience, computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ..., information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Mathematical Physics
The ''Journal of Mathematical Physics'' is a peer-reviewed journal published monthly by the American Institute of Physics devoted to the publication of papers in mathematical physics. The journal was first published bimonthly beginning in January 1960; it became a monthly publication in 1963. The current editor is Jan Philip Solovej from University of Copenhagen The University of Copenhagen (, KU) is a public university, public research university in Copenhagen, Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in Scandinavia, after Uppsala University. .... Its 2018 Impact Factor is 1.355 Abstracting and indexing This journal is indexed by the following services:Wellesley College Library
2013.


References


External ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



CNRS
The French National Centre for Scientific Research (, , CNRS) is the French state research organisation and is the largest fundamental science agency in Europe. In 2016, it employed 31,637 staff, including 11,137 tenured researchers, 13,415 engineers and technical staff, and 7,085 contractual workers. It is headquartered in Paris and has administrative offices in Brussels, Beijing, Tokyo, Singapore, Washington, D.C., Bonn, Moscow, Tunis, Johannesburg, Santiago de Chile, Israel, and New Delhi. Organization The CNRS operates on the basis of research units, which are of two kinds: "proper units" (UPRs) are operated solely by the CNRS, and Joint Research Units (UMRs – ) are run in association with other institutions, such as universities or INSERM. Members of Joint Research Units may be either CNRS researchers or university employees ( ''maîtres de conférences'' or ''professeurs''). Each research unit has a numeric code attached and is typically headed by a university profe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kurt Binder
Kurt Binder (10 February 1944 – 27 September 2022) was an Austrian theoretical physicist. Biography He received his Ph.D. in 1969 at the Technical University of Vienna, and his habilitation degree 1973 at the Technical University of Munich. He decided to accept a professorship post for Theoretical Physics at the Saarland University, having an offer from the Freie University in Berlin as well at the same time. From 1977 to 1983, he headed a group for Theoretical Physics in the Institute for Solid State Research at the Forschungszentrum Jülich, prior to taking his present post as a University Professor for Theoretical Physics at the University of Mainz, Germany. Since 1989 he was also an external member of the Max-Planck-Institute for Polymer Physics in Mainz. Since 1977, Binder was married to Marlies Ecker, with whom he had two sons. His research was in several areas of condensed matter physics and statistical physics. He was best known for pioneering the development of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transfer-matrix Method (statistical Mechanics)
In statistical mechanics, the transfer-matrix method is a mathematical technique which is used to write the partition function into a simpler form. It was introduced in 1941 by Hans Kramers and Gregory Wannier. In many one dimensional lattice models, the partition function is first written as an ''n''-fold summation over each possible microstate, and also contains an additional summation of each component's contribution to the energy of the system within each microstate. Overview Higher-dimensional models contain even more summations. For systems with more than a few particles, such expressions can quickly become too complex to work out directly, even by computer. Instead, the partition function can be rewritten in an equivalent way. The basic idea is to write the partition function in the form : \mathcal = \mathbf_0 \cdot \left\ \cdot \mathbf_ where v0 and v''N''+1 are vectors of dimension ''p'' and the ''p'' × ''p'' matrices W''k'' are the so-called transfer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path Integral Formulation
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization. Unlike previous methods, the path integral allows one to easily change coordinates between very different canonical descriptions of the same quantum system. Another advantage is that it is in practice easier to guess the correct form of the Lagrangian of a theory, which naturally enters the path integrals (for interactions of a certain type, these ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helmholtz Free Energy
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature ( isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium. In contrast, the Gibbs free energy or free enthalpy is most commonly used as a measure of thermodynamic potential (especially in chemistry) when it is convenient for applications that occur at constant ''pressure''. For example, in explosives research Helmholtz free energy is often used, since explosive reactions by their nature induce pressure changes. It is also frequently used to define fundamental equations of state of pure substances. The concept of free energy was developed by Hermann von Helmholtz, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]