Secondary Cohomology Operation
   HOME
*





Secondary Cohomology Operation
In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operation. They were introduced by in his solution to the Hopf invariant problem. Similarly one can define tertiary cohomology operations from the kernel to the cokernel of secondary operations, and continue like this to define higher cohomology operations, as in . Michael Atiyah pointed out in the 1960s that many of the classical applications could be proved more easily using generalized cohomology theories, such as in his reproof of the Hopf invariant one theorem. Despite this, secondary cohomology operations still see modern usage, for example, in the obstruction theory of commutative ring spectra. Examples of secondary and higher cohomology operations include the Massey product, the Toda bracket In mathematics, the Toda bracket is an ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cohomology Group
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cohomology Operation
In mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if ''F'' is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from ''F'' to itself. Throughout there have been two basic points: #the operations can be studied by combinatorial means; and #the effect of the operations is to yield an interesting bicommutant theory. The origin of these studies was the work of Pontryagin, Postnikov, and Norman Steenrod, who first defined the Pontryagin square, Postnikov square, and Steenrod square operations for singular cohomology, in the case of mod 2 coefficients. The combinatorial aspect there arises as a formulation of the failure of a natural diagonal map, at cochain level. The general theory of the Steenrod algebra of operations has been brought into close relation with that of the symmetric group. In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Invariant
In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres. __TOC__ Motivation In 1931 Heinz Hopf used Clifford parallels to construct the '' Hopf map'' :\eta\colon S^3 \to S^2, and proved that \eta is essential, i.e., not homotopic to the constant map, by using the fact that the linking number of the circles :\eta^(x),\eta^(y) \subset S^3 is equal to 1, for any x \neq y \in S^2. It was later shown that the homotopy group \pi_3(S^2) is the infinite cyclic group generated by \eta. In 1951, Jean-Pierre Serre proved that the rational homotopy groups :\pi_i(S^n) \otimes \mathbb for an odd-dimensional sphere (n odd) are zero unless i is equal to 0 or ''n''. However, for an even-dimensional sphere (''n'' even), there is one more bit of infinite cyclic homotopy in degree 2n-1. Definition Let \phi \colon S^ \to S^n be a continuous map (assume n>1). Then we can form the cell complex : C_\phi = S^n \cup_\ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michael Atiyah
Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Life Atiyah grew up in Sudan and Egypt but spent most of his academic life in the United Kingdom at the University of Oxford and the University of Cambridge and in the United States at the Institute for Advanced Study. He was the President of the Royal Society (1990–1995), founding director of the Isaac Newton Institute (1990–1996), master of Trinity College, Cambridge (1990–1997), chancellor of the University of Leicester (1995–2005), and the President of the Royal Society of Edinburgh (2005–2008). From 1997 until his death, he was an honorary professor in the University of Edinburgh. Atiyah's mathematical collaborators included Raoul Bott, Friedrich Hirzebruch and Isadore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Cohomology Theories
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Massey Product
In algebraic topology, the Massey product is a cohomology operation of higher order introduced in , which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist. Massey triple product Let a,b,c be elements of the cohomology algebra H^*(\Gamma) of a differential graded algebra \Gamma. If ab=bc=0, the Massey product \langle a,b,c\rangle is a subset of H^n(\Gamma), where n=\deg(a)+\deg(b)+\deg(c)-1. The Massey product is defined algebraically, by lifting the elements a,b,c to equivalence classes of elements u,v,w of \Gamma, taking the Massey products of these, and then pushing down to cohomology. This may result in a well-defined cohomology class, or may result in indeterminacy. Define \bar u to be (-1)^u. The cohomology class of an element u of \Gamma will be denoted by /math>. The Massey triple product of three cohomology classes is defined by : \langle rangle = \. The Massey product of three cohomology classes is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Toda Bracket
In mathematics, the Toda bracket is an operation on homotopy classes of maps, in particular on homotopy groups of spheres, named after Hiroshi Toda, who defined them and used them to compute homotopy groups of spheres in . Definition See or for more information. Suppose that :W\stackrel X\stackrel Y\stackrel Z is a sequence of maps between spaces, such that the compositions g\circ f and h\circ g are both nullhomotopic. Given a space A, let CA denote the cone of A. Then we get a (non-unique) map : F\colon CW\to Y induced by a homotopy from g\circ f to a trivial map, which when post-composed with h gives a map :h\circ F\colon CW\to Z. Similarly we get a non-unique map G\colon CX\to Z induced by a homotopy from h\circ g to a trivial map, which when composed with C_f\colon CW\to CX, the cone of the map f, gives another map, : G\circ C_f\colon CW\to Z. By joining together these two cones on W and the maps from them to Z, we get a map : \langle f, g, h\rangle\colon SW\to Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomology of the cohomology. This was still not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peterson–Stein Formula
In mathematics, the Peterson–Stein formula, introduced by , describes the Spanier–Whitehead dual of a secondary cohomology operation In mathematics, a secondary cohomology operation is a functorial correspondence between cohomology groups. More precisely, it is a natural transformation from the kernel of some primary cohomology operation to the cokernel of another primary operati .... References * Theorems in algebraic topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]