Sagitta (optics)
   HOME
*





Sagitta (optics)
file:Sagitta_(optics).jpg, 300x300px, Deep blue ray refers the radius of curvature and the red line segment is the sagitta of the curve (black). In optics and especially telescope making, sagitta or sag is a measure of the glass removed to yield an optical curve. It is approximated by the formula :: S(r) \approx \frac, where is the Radius of curvature (optics), radius of curvature of the optical surface. The sag is the Displacement (vector), displacement along the optic axis of the surface from the vertex, at distance r from the axis. A good explanation both of this approximate formula and the exact formula can be founhere Aspheric surfaces Optical surfaces with non-spherical profiles, such as the surfaces of aspheric lenses, are typically designed such that their sag is described by the equation :S(r)=\frac+\alpha_1 r^2+\alpha_2 r^4+\alpha_3 r^6+\cdots . Here, K is the conic constant as measured at the vertex (where r=0). The coefficients \alpha_i describe the deviation of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sagitta (optics)
file:Sagitta_(optics).jpg, 300x300px, Deep blue ray refers the radius of curvature and the red line segment is the sagitta of the curve (black). In optics and especially telescope making, sagitta or sag is a measure of the glass removed to yield an optical curve. It is approximated by the formula :: S(r) \approx \frac, where is the Radius of curvature (optics), radius of curvature of the optical surface. The sag is the Displacement (vector), displacement along the optic axis of the surface from the vertex, at distance r from the axis. A good explanation both of this approximate formula and the exact formula can be founhere Aspheric surfaces Optical surfaces with non-spherical profiles, such as the surfaces of aspheric lenses, are typically designed such that their sag is described by the equation :S(r)=\frac+\alpha_1 r^2+\alpha_2 r^4+\alpha_3 r^6+\cdots . Here, K is the conic constant as measured at the vertex (where r=0). The coefficients \alpha_i describe the deviation of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties. Most optical phenomena can be accounted for by using the classical electromagnetic description of light. Complete electromagnetic descriptions of light are, however, often difficult to apply in practice. Practical optics is usually done using simplified models. The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Telescope Making
''Amateur Telescope Making'' (''ATM'') is a series of three books edited by Albert G. Ingalls between 1926 and 1953 while he was an associate editor at ''Scientific American''. The books cover various aspects of telescope construction and observational technique, sometimes at quite an advanced level, but always in a way that is accessible to the intelligent amateur. The caliber of the contributions is uniformly high and the books have remained in constant use by both amateurs and professionals. The first volume was essentially a reprinting of articles written by Ingalls and Russell W. Porter for Ingalls's monthly column "The Backyard Astronomer" (later " The Amateur Scientist") in the 1920s. It also featured numerous drawings by Porter. The two later volumes contained chapters written by James Gilbert Baker, George Ellery Hale, George Willis Ritchey and others on topics ranging from lens grinding to monochromators to photoelectric photometry. Much of the information, includ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radius Of Curvature (optics)
Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis. The distance from the vertex to the center of curvature is the radius of curvature of the surface. The sign convention for the optical radius of curvature is as follows: * If the vertex lies to the left of the center of curvature, the radius of curvature is positive. * If the vertex lies to the right of the center of curvature, the radius of curvature is negative. Thus when viewing a biconvex lens from the side, the left surface radius of curvature is positive, and the right radius of curvature is negative. Note however that ''in areas of optics other than design'', other sign conventions are sometimes used. In particular, many undergraduate physics textbooks use the Gaussian sign conve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Displacement (vector)
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position. A displacement may be also described as a ''relative position'' (resulting from the motion), that is, as the final position of a point relative to its initial position . The corresponding displacement vector can be defined as the difference between the final and initial positions: s = x_\textrm - x_\textrm = \Delta In considering motions of objects over time, the instantaneous velocity of the object is the rate of change of the displacement as a function of time. The instantaneous speed, then, is distinct from velocity, or the time rate of cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optic Axis
An optical axis is a line along which there is some degree of rotational symmetry in an optical system such as a camera lens, microscope or telescopic sight. The optical axis is an imaginary line that defines the path along which light propagates through the system, up to first approximation. For a system composed of simple lenses and mirrors, the axis passes through the center of curvature of each surface, and coincides with the axis of rotational symmetry. The optical axis is often coincident with the system's mechanical axis, but not always, as in the case of off-axis optical systems. For an optical fiber, the optical axis is along the center of the fiber core, and is also known as the ''fiber axis''. See also * Ray (optics) * Cardinal point (optics) In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the '' focal points'', the principal points, and the nodal p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aspheric Lens
An aspheric lens or asphere (often labeled ''ASPH'' on eye pieces) is a lens (optics), lens whose surface profiles are not portions of a sphere or Cylinder (geometry), cylinder. In photography, a camera lens, lens assembly that includes an aspheric element is often called an aspherical lens. The asphere's more complex surface profile can reduce or eliminate spherical aberration and also reduce other Aberration in optical systems, optical aberrations such as Astigmatism (optical systems), astigmatism, compared to a simple lens. A single aspheric lens can often replace a much more complex multi-lens system. The resulting device is smaller and lighter, and sometimes cheaper than the multi-lens design. Aspheric elements are used in the design of multi-element wide-angle lens, wide-angle and fast normal lenses to reduce aberrations. They are also used in combination with reflective elements (catadioptric systems) such as the aspherical Schmidt corrector plate used in the Schmidt cameras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conic Constant
In geometry, the conic constant (or Schwarzschild constant, after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter ''K''. The constant is given by K = -e^2, where is the eccentricity of the conic section. The equation for a conic section with apex at the origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * Origin (comics), ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * The Origin (Buffy comic), ''The Origin'' (Bu ... and tangent to the y axis is y^2-2Rx+(K+1)x^2 = 0 alternately x = \dfrac where ''R'' is the radius of curvature at . This formulation is used in geometric optics to specify oblate elliptical (), spherical (), prolate elliptical (), parabolic (), and hyperbolic () lens and mirror surfaces. When the paraxial approximation is valid, the optical surface can be treated as a spherical surface with the same radius. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axial Symmetry
Axial symmetry is symmetry around an axis; an object is axially symmetric if its appearance is unchanged if rotated around an axis."Axial symmetry"
glossary of meteorology. Retrieved 2010-04-08. For example, a without trademark or other design, or a plain white tea saucer, looks the same if it is rotated by any angle about the line passing lengthwise through its center, so it is axially symmetric. Axial symmetry can also be
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadric Surface
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections ( ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in ''D'' + 1 variables; for example, in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a ''degenerate quadric'' or a ''reducible quadric''. In coordinates , the general quadric is thus defined by the algebraic equationSilvio LevQuadricsin "Geometry Formulas and Facts", excerpted from 30th Edition of ''CRC Standard Mathematical Tables and Formulas'', CRC Press, from The Geometry Center at University of Minnesota : \sum_^ x_i Q_ x_j + \sum_^ P_i x_i + R = 0 which may be compactly written in vector and matrix notation as: : x Q x^\mathrm + P x^\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Versine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) trigonometric tables. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chord (geometry)
A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word ''chord'' is from the Latin ''chorda'' meaning ''bowstring''. In circles Among properties of chords of a circle are the following: # Chords are equidistant from the center if and only if their lengths are equal. # Equal chords are subtended by equal angles from the center of the circle. # A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. # If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD ( power of a point theorem). In conics The midpoints of a set of parallel chords of a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]