HOME



picture info

Symmetric Derivative
In mathematics, the symmetric derivative is an Operator (mathematics), operation generalizing the ordinary derivative. It is defined as: \lim_ \frac. The expression under the limit is sometimes called the symmetric difference quotient. A function is said to be symmetrically differentiable at a point ''x'' if its symmetric derivative exists at that point. If a function is differentiable function, differentiable (in the usual sense) at a point, then it is also symmetrically differentiable, but the converse is not true. A well-known counterexample is the absolute value function , which is not differentiable at , but is symmetrically differentiable here with symmetric derivative 0. For differentiable functions, the symmetric difference quotient does provide a better Numerical differentiation, numerical approximation of the derivative than the usual difference quotient. The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Image (mathematics)
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each Element (mathematics), element of a given subset A of its Domain of a function, domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general Binary relation#Operations, binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a Function (mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Symmetrically Continuous Function
In mathematics, a function f: \mathbb \to \mathbb is symmetrically continuous at a point ''x'' if :\lim_ f(x+h)-f(x-h) = 0. The usual definition of continuity implies symmetric continuity, but the converse is not true. For example, the function x^ is symmetrically continuous at x=0, but not continuous. Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability. The set of the symmetrically continuous functions, with the usual scalar multiplication can be easily shown to have the structure of a vector space over \mathbb, similarly to the usually continuous functions, which form a linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ... within it. References * Differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Generalizations Of The Derivative
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. Fréchet derivative The Fréchet derivative defines the derivative for general normed vector spaces V, W. Briefly, a function f : U \to W, where U is an open subset of V, is called ''Fréchet differentiable'' at x \in U if there exists a bounded linear operator A:V\to W such that \lim_ \frac = 0. Functions are defined as being differentiable in some open neighbourhood (mathematics), neighbourhood of x, rather than at individual points, as not doing so tends to lead to many Pathological (mathematics), pathological counterexamples. The Fréchet derivative is quite similar to the formula for the derivative found in elementary one-variable calculus, \lim_\frac = A, and simply moves ''A'' to the left hand side. However, the Fréchet derivative ''A'' denotes the function t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Density Point
In mathematics, Lebesgue's density theorem states that for any Lebesgue measurable set A\subset \R^n, the "density" of ''A'' is 0 or 1 at almost every point in \R^n. Additionally, the "density" of ''A'' is 1 at almost every point in ''A''. Intuitively, this means that the "edge" of ''A'', the set of points in ''A'' whose "neighborhood" is partially in ''A'' and partially outside of ''A'', is negligible. Let μ be the Lebesgue measure on the Euclidean space R''n'' and ''A'' be a Lebesgue measurable subset of R''n''. Define the approximate density of ''A'' in a ε-neighborhood of a point ''x'' in R''n'' as : d_\varepsilon(x)=\frac where ''B''ε denotes the closed ball of radius ε centered at ''x''. Lebesgue's density theorem asserts that for almost every point ''x'' of R''n'' the density : d(x)=\lim_ d_(x) exists and is equal to 0 or 1. In other words, for every measurable set ''A'', the density of ''A'' is 0 or 1 almost everywhere In measure theory (a branch of math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Central Differencing Scheme
In applied mathematics, the central differencing scheme is a finite difference method that optimizes the approximation for the differential operator in the central node of the considered patch and provides numerical solutions to differential equations. It is one of the schemes used to solve the integrated convection–diffusion equation and to calculate the transported property Φ at the e and w faces, where ''e'' and ''w'' are short for ''east'' and ''west'' (compass directions being customarily used to indicate directions on computational grids). The method's advantages are that it is easy to understand and implement, at least for simple material relations; and that its convergence rate is faster than some other finite differencing methods, such as forward and backward differencing. The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Sign Function
In mathematics, the sign function or signum function (from '' signum'', Latin for "sign") is a function that has the value , or according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as \sgn x or \sgn (x). Definition The signum function of a real number x is a piecewise function which is defined as follows: \sgn x :=\begin -1 & \text x 0. \end The law of trichotomy states that every real number must be positive, negative or zero. The signum function denotes which unique category a number falls into by mapping it to one of the values , or which can then be used in mathematical expressions or further calculations. For example: \begin \sgn(2) &=& +1\,, \\ \sgn(\pi) &=& +1\,, \\ \sgn(-8) &=& -1\,, \\ \sgn(-\frac) &=& -1\,, \\ \sgn(0) &=& 0\,. \end Basic properties Any real number can be expressed as the product of its absolute value and its sig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Second Derivative
In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object with respect to time is the instantaneous acceleration of the object, or the rate at which the velocity of the object is changing with respect to time. In Leibniz notation: a = \frac = \frac, where is acceleration, is velocity, is time, is position, and d is the instantaneous "delta" or change. The last expression \tfrac is the second derivative of position () with respect to time. On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the opposite way. Second derivative power rule The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called '' postulates'', which either were considered as evid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Darboux Property
In mathematics, Darboux's theorem is a theorem in real analysis, named after Jean Gaston Darboux. It states that every function that results from the differentiation of another function has the intermediate value property: the image of an interval is also an interval. When ''ƒ'' is continuously differentiable (''ƒ'' in ''C''1( 'a'',''b''), this is a consequence of the intermediate value theorem. But even when ''ƒ′'' is ''not'' continuous, Darboux's theorem places a severe restriction on what it can be. Darboux's theorem Let I be a closed interval, f\colon I\to \R be a real-valued differentiable function. Then f' has the intermediate value property: If a and b are points in I with a such that f'(x)=y.Apostol, Tom M.: Mathematical Analysis: A Modern Approach to Advanced Calculus, 2nd edition, Addison-Wesley Longman, Inc. (1974), page 112.Olsen, Lars: ''A New Proof of Darboux's Theorem'', Vol. 111, No. 8 (Oct., 2004) (pp. 713–715), The American Mathematical MonthlyRud ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Secant Line
In geometry, a secant is a line (geometry), line that intersects a curve at a minimum of two distinct Point (geometry), points.. The word ''secant'' comes from the Latin word ''secare'', meaning ''to cut''. In the case of a circle, a secant intersects the circle at exactly two points. A Chord (geometry), chord is the line segment determined by the two points, that is, the interval (mathematics), interval on the secant whose ends are the two points. Circles A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a ''secant line'', at one point a ''tangent line'' and at no points an ''exterior line''. A ''chord'' is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line determines a unique chord. In rigorous modern treatments of plane geometry, results that seem obvious and were assumed (without statement) by Euclid in Euclid's Elements, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]