HOME



picture info

Superhabitable Planet
A superhabitable world is a hypothetical type of planet or moon that is better suited than Earth for the emergence and evolution of life. The concept was introduced in a 2014 paper by René Heller and John Armstrong, in which they criticized the language used in the search for habitable exoplanets and proposed clarifications. The authors argued that knowing whether a world is located within the star's habitable zone is insufficient to determine its habitability, and that the prevailing model of characterization was geocentric or anthropocentric in nature. Instead, they proposed a biocentric model that prioritized characteristics affecting the abundance of life and biodiversity on a world's surface. If a world possesses more diverse flora and fauna than there are on Earth, then it would empirically show that its natural environment is more hospitable to life. To identify such a world, one should consider its geological processes, formation age, atmospheric composition, ocean cov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


A-type Main Sequence Star
An A-type main-sequence star (A) or A dwarf star is a main-sequence (hydrogen burning) star of spectral type A and luminosity class (five). These stars have spectra defined by strong hydrogen Balmer absorption lines. They measure between 1.7 and 2.1 solar masses (), have surface temperatures between 7,600 and 10,000  K, and live for about a quarter of the lifetime of our Sun. Bright and nearby examples are Altair (A7), Sirius A (A1), and Vega (A0). A-type stars do not have convective zones and thus are not expected to harbor magnetic dynamos. As a consequence, because they do not have strong stellar winds, they lack a means to generate X-ray emissions. Spectral standard stars The revised Yerkes Atlas system listed a dense grid of A-type dwarf spectral standard stars, but not all of these have survived to this day as standards. The "anchor points" and "dagger standards" of the MK spectral classification system among the A-type main-sequence dwarf stars, i.e. th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Habitability Of Yellow Dwarf Systems
Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.Perryman, 2011, p. 285 Yellow dwarfs comprise the G-type stars of the main sequence, with masses between 0.9 and 1.1 M☉ and surface temperatures between 5000 and 6000 K, like the Sun.''Stellar classification''. '' British Encyclopedia''. Retrieved october 8th, 2015. They are the third most common in the Milky Way Galaxy and the only ones in which the habitable zone coincides completely with the ultraviolet habitable zone. Since the habitable zone is farther away in more massive and luminous stars, the separation between the main star and the inner edge of this region is greater in yellow dwarfs than in red and orange dwarfs.Niels Bohr Institute. (2015Planets in the habi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solar Minimum
Solar minimum is the regular period of least solar activity in the Sun's 11-year solar cycle. During solar minimum, sunspot and solar flare activity diminishes, and often does not occur for days at a time. On average, the solar cycle takes about 11 years to go from one solar minimum to the next, with duration observed varying from 9 to 14 years. The date of the minimum is described by a smoothed average over 12 months of sunspot activity, so identifying the date of the solar minimum usually can only happen 6 months after the minimum takes place. Solar minimum is contrasted with the solar maximum, when hundreds of sunspots may occur. Solar minimum and solar maximum Solar minima and maxima are the two extremes of the Sun's 11-year and 400-year activity cycle. At a maximum, the Sun is peppered with sunspots, solar flares erupt, and the Sun hurls billion-ton clouds of electrified gas into space. Sky watchers may see more auroras, and space agencies must monitor radiation storms for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photoevaporation
Photoevaporation is the process where energetic radiation ionises gas and causes it to disperse away from the ionising source. The term is typically used in an astrophysical context where ultraviolet radiation from hot stars acts on clouds of material such as molecular clouds, protoplanetary disks, or planetary atmospheres. Molecular clouds One of the most obvious manifestations of astrophysical photoevaporation is seen in the eroding structures of molecular clouds that luminous stars are born within. Evaporating gaseous globules (EGGs) Evaporating gaseous globules or EGGs were first discovered in the Eagle Nebula. These small cometary globules are being photoevaporated by the stars in the nearby cluster. EGGs are places of ongoing star-formation. Planetary atmospheres A planet can be stripped of its atmosphere (or parts of the atmosphere) due to high energy photons and other electromagnetic radiation. If a photon interacts with an atmospheric molecule, the molecule is accel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ionizing Radiation
Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum. Gamma rays, X-rays, and the higher energy vacuum ultraviolet, ultraviolet part of the electromagnetic spectrum are ionizing radiation; whereas the lower energy ultraviolet, visible light, infrared, microwaves, and radio waves are non-ionizing radiation. Nearly all types of laser light are non-ionizing radiation. The boundary between ionizing and non-ionizing radiation in the ultraviolet area cannot be sharply defined, as different molecules and atoms ionize at Ionization energies of the elements (data page), different energies. The energy of ionizing radiation starts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tidal Locking
Tidal locking between a pair of co-orbiting astronomical body, astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked body possesses synchronous rotation, the object takes just as long to rotate around its own axis as it does to revolve around its partner. For example, the same side of the Moon always faces Earth, although there is some libration, variability because the Moon's orbit is not perfectly circular. Usually, only the natural satellite, satellite is tidally locked to the larger body. However, if both the difference in mass between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and Charon (moon), Charon, and for Eris (dwarf planet), Eris and Dysnomia (moon), Dysnomia. Alternative names for the tidal locking process are gravitational locking, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Habitable Zone
In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure.J. F. Kasting, D. P. Whitmire, R. T. Reynolds, Icarus 101, 108 (1993). The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and extraterrestrial intelligence, intelligence. As such, it is considered by many to be a major factor of planetary habitability, and the most likely place to find extraterrestrial liquid water and biosignatures elsewhere in the universe. The habitable zone is also called the Goldilocks zone, a metaphor, all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Luminosity
Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical object, astronomical objects. In SI units, luminosity is measured in joules per second, or watts. In astronomy, values for luminosity are often given in the terms of the Solar luminosity, luminosity of the Sun, ''L''⊙. Luminosity can also be given in terms of the astronomical Magnitude (astronomy), magnitude system: the Absolute magnitude#Bolometric magnitude, absolute bolometric magnitude (''M''bol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or Passband, filter band. In contrast, the term ''brightness'' in astronomy is gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Habitability Of Red Dwarf Systems
The theorized habitability of red dwarf systems is determined by a large number of factors. Modern evidence suggests that planets in red dwarf systems are unlikely to be habitable, due to high probability of tidal locking, likely lack of atmospheres, and the high stellar variation many such planets would experience. However, the sheer number and longevity of red dwarfs could likely provide ample opportunity to realize any small possibility of habitability. Current arguments concerning the habitability of red dwarf systems are unresolved, and the area remains an open question of study in the fields of climate modeling and the evolution of life on Earth. Observational data and statistical arguments suggest that red dwarf systems are uninhabitable for indeterminate reasons. On the other hand, 3D climate models favor habitability and wider habitable zones for slow rotating and tidally locked planets. A major impediment to the development of life in red dwarf systems is the inten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Red Dwarf
A red dwarf is the smallest kind of star on the main sequence. Red dwarfs are by far the most common type of fusing star in the Milky Way, at least in the neighborhood of the Sun. However, due to their low luminosity, individual red dwarfs are not easily observed. Not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the star nearest to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the fusing stars in the Milky Way. The coolest red dwarfs near the Sun have a surface temperature of about and the smallest have radii about 9% that of the Sun, with masses about 7.5% that of the Sun. These red dwarfs have spectral types of L0 to L2. There is some overlap with the properties of brown dwarfs, since the most massive brown dwarfs at lower metallicity can be as hot as and have late M spectral types. Definitions and usage of the term "red d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RNA World
The RNA world is a hypothetical stage in the evolutionary history of life on Earth in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence of this stage. Alexander Rich first proposed the concept of the RNA world in 1962, and Walter Gilbert coined the term in 1986. Among the characteristics of RNA that suggest its original prominence are that: * Like DNA, RNA can store and replicate genetic information. Although RNA is considerably more fragile than DNA, some ancient RNAs may have evolved the ability to methylate other RNAs to protect them. The concurrent formation of all four RNA building blocks further strengthens the hypothesis. * Enzymes made of RNA ( ribozymes) can catalyze (start or accelerate) chemical reactions that are critical for life, so it is conceivable that in an RNA world, ribozymes might have preceded enzymes made of protein. * Many coenzymes that have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]