Squaregraph
In graph theory, a branch of mathematics, a squaregraph is a type of undirected graph that can be drawn in the plane in such a way that every bounded face is a quadrilateral and every vertex with three or fewer neighbors is incident to an unbounded face. Related graph classes The squaregraphs include as special cases trees, grid graphs, gear graphs, and the graphs of polyominos. As well as being planar graphs, squaregraphs are median graphs, meaning that for every three vertices ''u'', ''v'', and ''w'' there is a unique median vertex ''m''(''u'',''v'',''w'') that lies on shortest paths between each pair of the three vertices.. See for a discussion of planar median graphs more generally. As with median graphs more generally, squaregraphs are also partial cubes: their vertices can be labeled with binary strings such that the Hamming distance between strings is equal to the shortest path distance between vertices. The graph obtained from a squaregraph by making a vertex for each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gear Graph
This partial list of graphs contains definitions of graphs and graph families which are known by particular names, but do not have a Wikipedia article of their own. For collected definitions of graph theory terms that do not refer to individual graph types, such as ''vertex'' and ''path'', see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see Graphs. Gear A gear graph, denoted ''G''''n'' is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the perimeter of a wheel graph ''W''''n''. Thus, ''G''''n'' has 2''n''+1 vertices and 3''n'' edges. Gear graphs are examples of squaregraphs, and play a key role in the forbidden graph characterization of squaregraphs. Gear graphs are also known as cogwheels and bipartite wheels. Helm A helm graph, denoted ''Hn'' is a graph obtained by attaching a single edge and node to each node of the outer circuit of a wheel graph ''Wn''. Lobster A lobster graph is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denotin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circle Graph
In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other. Algorithmic complexity gives an O(''n''2)-time algorithm that tests whether a given ''n''-vertex undirected graph is a circle graph and, if it is, constructs a set of chords that represents it. A number of other problems that are NP-complete on general graphs have polynomial time algorithms when restricted to circle graphs. For instance, showed that the treewidth of a circle graph can be determined, and an optimal tree decomposition constructed, in O(''n''3) time. Additionally, a minimum fill-in (that is, a chordal graph with as few edges as possible that contains the given circle graph as a subgraph) may be found in O(''n''3) time. has shown that a maximum clique of a circle graph can be fou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Median Graph
In graph theory, a division of mathematics, a median graph is an undirected graph in which every three vertices ''a'', ''b'', and ''c'' have a unique ''median'': a vertex ''m''(''a'',''b'',''c'') that belongs to shortest paths between each pair of ''a'', ''b'', and ''c''. The concept of median graphs has long been studied, for instance by or (more explicitly) by , but the first paper to call them "median graphs" appears to be . As Chung, Graham, and Saks write, "median graphs arise naturally in the study of ordered sets and discrete distributive lattices, and have an extensive literature".. In phylogenetics, the Buneman graph representing all maximum parsimony evolutionary trees is a median graph. Median graphs also arise in social choice theory: if a set of alternatives has the structure of a median graph, it is possible to derive in an unambiguous way a majority preference among them. Additional surveys of median graphs are given by , , and . Examples Every tree i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Cube
In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels. Such a labeling is called a ''Hamming labeling''; it represents an isometric embedding of the partial cube into a hypercube. History was the first to study isometric embeddings of graphs into hypercubes. The graphs that admit such embeddings were characterized by and , and were later named partial cubes. A separate line of research on the same structures, in the terminology of families of sets rather than of hypercube labelings of graphs, was f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Induced Subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subset V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. * Induced paths are induced subgraphs that are paths. The shortest path betwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Forbidden Graph Characterization
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph and the complete bipartite graph . For Kuratowski's theorem, the notion of containment is that of graph homeomorphism, in which a subdivision of one graph appears as a subgraph of the other. Thus, every graph either has a planar drawing (in which case it belongs to the family of planar graphs) or it has a subdivision of at least one of these two graphs as a subgraph (in which case it does not belong to the planar graphs). Definition More generally, a forbidden g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplex Graph
In graph theory, a branch of mathematics, the simplex graph of an undirected graph is itself a graph, with one node for each clique (a set of mutually adjacent vertices) in . Two nodes of are linked by an edge whenever the corresponding two cliques differ in the presence or absence of a single vertex. The empty set is included as one of the cliques of that are used to form the clique graph, as is every set of one vertex and every set of two adjacent vertices. Therefore, the simplex graph contains within it a subdivision of itself. The simplex graph of a complete graph is a hypercube graph, and the simplex graph of a cycle graph of length four or more is a gear graph. The simplex graph of the complement graph of a path graph is a Fibonacci cube. The complete subgraphs of can be given the structure of a median algebra: the median of three cliques , , and is formed by the vertices that belong to a majority of the three cliques. Any two vertices belonging to this median set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Claw (graph Theory)
In graph theory, a star is the complete bipartite graph a tree with one internal node and leaves (but no internal nodes and leaves when ). Alternatively, some authors define to be the tree of order with maximum diameter 2; in which case a star of has leaves. A star with 3 edges is called a claw. The star is edge-graceful when is even and not when is odd. It is an edge-transitive matchstick graph, and has diameter 2 (when ), girth ∞ (it has no cycles), chromatic index , and chromatic number 2 (when ). Additionally, the star has large automorphism group, namely, the symmetric group on letters. Stars may also be described as the only connected graphs in which at most one vertex has degree greater than one. Relation to other graph families Claws are notable in the definition of claw-free graphs, graphs that do not have any claw as an induced subgraph. They are also one of the exceptional cases of the Whitney graph isomorphism theorem: in general, graphs with isom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product Of Graphs
Cartesian means of or relating to the French philosopher René Descartes—from his Latinized name ''Cartesius''. It may refer to: Mathematics *Cartesian closed category, a closed category in category theory *Cartesian coordinate system, modern rectangular coordinate system *Cartesian diagram, a construction in category theory *Cartesian geometry, now more commonly called analytic geometry *Cartesian morphism, formalisation of ''pull-back'' operation in category theory * Cartesian oval, a curve *Cartesian product, a direct product of two sets * Cartesian product of graphs, a binary operation on graphs *Cartesian tree, a binary tree in computer science Philosophy * Cartesian anxiety, a hope that studying the world will give us unchangeable knowledge of ourselves and the world * Cartesian circle, a potential mistake in reasoning * Cartesian doubt, a form of methodical skepticism as a basis for philosophical rigor *Cartesian dualism, the philosophy of the distinction between mind ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rooted Graph
In mathematics, and, in particular, in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots. Rooted graphs may also be known (depending on their application) as pointed graphs or flow graphs. In some of the applications of these graphs, there is an additional requirement that the whole graph be reachable from the root vertex. Variations In topological graph theory, the notion of a rooted graph may be extended to consider multiple vertices or multiple edges as roots. The former are sometimes called vertex-rooted graphs in order to distinguish them from edge-rooted graphs in this context. Graphs with multiple nodes designated as roots are also of some interest in combinatorics, in the area of random graphs. These graphs are also called multiply rooted graphs. The terms rooted directed graph or ro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |