Silver Ratio
In mathematics, the silver ratio is a geometrical aspect ratio, proportion with exact value the positive polynomial root, solution of the equation The name ''silver ratio'' results from analogy with the golden ratio, the positive solution of the equation Although its name is recent, the silver ratio (or silver mean) has been studied since ancient times because of its connections to the square root of 2, almost-isosceles Pythagorean triple#Special cases and related equations, Pythagorean triples, square triangular numbers, Pell numbers, the octagon, and six polyhedron, polyhedra with octahedral symmetry. Definition If the ratio of two quantities is proportionate to the sum of two and their reciprocal ratio, they are in the silver ratio: \frac =\frac The ratio \frac is here denoted Substituting a=\sigma b \, in the second fraction, \sigma =\frac. It follows that the silver ratio is the positive solution of quadratic equation \sigma^2 -2\sigma -1 =0. The quadratic for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Aspect Ratio
The aspect ratio of a geometry, geometric shape is the ratio of its sizes in different dimensions. For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, when the rectangle is oriented as a "landscape format, landscape". The aspect ratio is most often expressed as two integer numbers separated by a colon (x:y), less commonly as a simple or decimal Fraction (mathematics), fraction. The values x and y do not represent actual widths and heights but, rather, the proportion between width and height. As an example, 8:5, 16:10, 1.6:1, and 1.6 are all ways of representing the same aspect ratio. In objects of more than two dimensions, such as hyperrectangles, the aspect ratio can still be defined as the ratio of the longest side to the shortest side. Applications and uses The term is most commonly used with reference to: * Graphic / image ** Aspect ratio (image), Image aspect ratio ** Display aspect ratio ** Pape ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Exact Trigonometric Values
In mathematics, the values of the trigonometric functions can be expressed approximately, as in \cos (\pi/4) \approx 0.707, or exactly, as in \cos (\pi/ 4)= \sqrt 2 /2. While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers. Common angles The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45° (see below for proofs). In the table below, the label "Undefined" represents a ratio 1:0. If the codomain of the trigonometric functions is taken to be the real numbers these entries are undefined, whereas if the codomain is taken to be the projectiv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Quadratic Field
In algebraic number theory, a quadratic field is an algebraic number field of Degree of a field extension, degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 and 1. If d>0, the corresponding quadratic field is called a real quadratic field, and, if d<0, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a Field extension, subfield of the field of the real numbers. Quadratic fields have been studied in great depth, initially as part of the theory of binary quadratic forms. There remain some unsolved problems. The class number problem is particularly important. Ring of integers Discriminant For a nonzero square free integer , the Discriminant of an algebraic number field, discriminant of the quadratic field is |
|
Quadratic Integer
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. A complex number is called a quadratic integer if it is a root of some monic polynomial (a polynomial whose leading coefficient is 1) of degree two whose coefficients are integers, i.e. quadratic integers are algebraic integers of degree two. Thus quadratic integers are those complex numbers that are solutions of equations of the form : with and (usual) integers. When algebraic integers are considered, the usual integers are often called ''rational integers''. Common examples of quadratic integers are the square roots of rational integers, such as \sqrt, and the complex number i=\sqrt, which generates the Gaussian integers. Another common example is the non- real cubic root of unity \frac, which generates the Eisenstein integers. Quadratic integers occur in the solutions of many Diophantine equations, such as Pell's equations, and other questions related to integral quadrati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Unit Interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology. In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: , , and . However, the notation ' is most commonly reserved for the closed interval . Properties The unit interval is a complete metric space, homeomorphic to the extended real number line. As a topological space, it is compact, contractible, path connected and locally path connected. The Hilbert cube is obtained by taking a topological product of countably many copies of the unit interval. In mathematical analysis, the unit interval is a one-dimensional analytical manifold whose boundary consists of the two points 0 and 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Almost Integer
In recreational mathematics, an almost integer (or near-integer) is any number that is not an integer but is very close to one. Almost integers may be considered interesting when they arise in some context in which they are unexpected. Almost integers relating to the golden ratio and Fibonacci numbers Some examples of almost integers are high powers of the golden ratio \phi=\frac\approx 1.618, for example: : \begin \phi^ & =\frac\approx 3571.00028 \\ pt\phi^ & =2889+1292\sqrt5 \approx 5777.999827 \\ pt\phi^ & =\frac\approx 9349.000107 \end The fact that these powers approach integers is non-coincidental, because the golden ratio is a Pisot–Vijayaraghavan number. The ratios of Fibonacci or Lucas numbers can also make almost integers, for instance: * \frac \approx 1242282009792667284144565908481.999999999999999999999999999999195 * \frac \approx 2010054515457065378082322433761.000000000000000000000000000000497 The above examples can be generalized by the following sequ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Conjugate Element (field Theory)
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Pisot Number
Charles Pisot (2 March 1910 – 7 March 1984) was a French mathematician. He is chiefly recognized as one of the primary investigators of the numerical set associated with his name, the Pisot–Vijayaraghavan numbers. He followed the classical path of great French mathematicians by studying at the École Normale Supérieure on Ulm street, where he was received first at the agrégation in 1932. He then began his academic career at the Bordeaux University before being offered a chair at the Science Faculty of Paris and at the École Polytechnique. He was a member of Bourbaki. Also of interest is the recently solved Pisot conjecture on rational functions. (For a technical account and bibliography see Umberto Zannier's paper in the ''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Simple Continued Fraction
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence \ of integer numbers. The sequence can be finite or infinite, resulting in a finite (or terminated) continued fraction like :a_0 + \cfrac or an infinite continued fraction like :a_0 + \cfrac Typically, such a continued fraction is obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In the ''finite'' case, the iteration/recursion is stopped after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an ''infinite'' continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. Simple co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Geometric Series
In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac14 + \tfrac18 + \cdots is a geometric series with common ratio , which converges to the sum of . Each term in a geometric series is the geometric mean of the term before it and the term after it, in the same way that each term of an arithmetic series is the arithmetic mean of its neighbors. While Ancient Greek philosophy, Greek philosopher Zeno's paradoxes about time and motion (5th century BCE) have been interpreted as involving geometric series, such series were formally studied and applied a century or two later by Greek mathematics, Greek mathematicians, for example used by Archimedes to Quadrature of the Parabola, calculate the area inside a parabola (3rd century BCE). Today, geometric series are used in mathematical finance, calculati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |