Safe Operating Area
For power semiconductor devices (such as BJT, MOSFET, thyristor or IGBT), the safe operating area (SOA) is defined as the voltage and current (electricity), current conditions over which the device can be expected to operate without self-damage. SOA is usually presented in transistor datasheets as a graph with VCE (collector-emitter voltage) on the abscissa and ICE (collector-emitter current) on the ordinate; the safe 'area' referring to the area under the curve. The SOA specification combines the various limitations of the device — maximum voltage, current, power, junction temperature, secondary breakdown — into one curve, allowing simplified design of protection circuitry. Often, in addition to the continuous rating, separate SOA curves are also plotted for short duration pulse conditions (1 ms pulse, 10 ms pulse, etc.). The safe operating area curve is a graphical representation of the power handling capability of the device under various conditions. The SOA curve takes in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Semiconductor Device
A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics (for example in a switch-mode power supply). Such a device is also called a power device or, when used in an integrated circuit, a power IC. A power semiconductor device is usually used in "commutation mode" (i.e., it is either on or off), and therefore has a design optimized for such usage; it should usually not be used in linear operation. Linear power circuits are widespread as voltage regulators, audio amplifiers, and radio frequency amplifiers. Power semiconductors are found in systems delivering as little as a few tens of milliwatts for a headphone amplifier, up to around a gigawatt in a high voltage direct current transmission line. History The first electronic device used in power circuits was the electrolytic rectifier - an early version was described by a French experimenter, A. Nodon, in 1904. These were briefly popular with early radio experimenters as they ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithmic Scale
A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences among the magnitudes of the numbers involved. Unlike a linear Scale (measurement), scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified). A logarithmic scale is Nonlinear system, nonlinear, and as such numbers with equal distance between them such as 1, 2, 3, 4, 5 are not equally spaced. Equally spaced values on a logarithmic scale have exponents that increment uniformly. Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 101, 102, 103, 104, 105) and 2, 4, 8, 16, and 32 (i.e., 21, 22, 23, 24, 25). Exponential growt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derating
In electronics, derating is the operation of a device at less than its rated maximum capability to prolong its life. Typical examples include operations below the maximum power rating, current rating, or voltage rating. In electronics Power semiconductor devices have a maximum power dissipation rating usually quoted at a case temperature of . The datasheet for the device also includes a ''derating curve'' which indicates how much a device will dissipate without getting damaged at any given case temperature, and this must be taken into account while designing a system. As can be seen from the derating curve image for a hypothetical bipolar junction transistor, the device (rated for 100 W at ) cannot be expected to dissipate anything more than about 40 W if the ambient temperature is such that the temperature at which the device's case will stabilize (after heat-sinking) is . This final case temperature is a function of the thermal resistance between the device's case and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Snubber
A snubber is a device used to suppress ("wiktionary:snub, snub") a phenomenon such as voltage transients in electronics, electrical systems, pressure transients in fluid systems (caused by for example water hammer) or excess force or rapid movement in mechanics, mechanical systems. Electrical systems Snubbers are frequently used in electrical systems with an electromagnetic induction, inductive load where the sudden interruption of electric current, current flow leads to a large counter-electromotive force: a rise in voltage across the current switching device that opposes the change in current, in accordance with Faraday's law of induction, Faraday's law. This transient can be a source of electromagnetic interference (EMI) in other circuits. Additionally, if the voltage generated across the device is beyond what the device is intended to tolerate, it may damage or destroy it. The snubber provides a short-term alternative current path around the current switching device so that th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Horowitz
Paul Horowitz (born 1942) is an United States of America, American physicist and electrical engineering, electrical engineer, known primarily for his work in electronics design, as well as for his role in the search for extraterrestrial intelligence (see SETI). Biography At age 8, Horowitz achieved distinction as the world's youngest amateur radio operator. He went on to study physics at Harvard University (Bachelor of Arts, A.B., 1965; Master's degree, A.M., 1967; Doctor of Philosophy, Ph.D., 1970), where he has also spent all of his subsequent career. His early work was on Scanning electron microscope, scanning microscopy (using both protons and X-rays). Horowitz has also conducted astrophysical research on pulsars and investigations in biophysics. His interest in practical electronics has led to a handful of inventions, including an automated voting machine and an acoustic mechanism for land mine, landmine detection, and an electronic Morse Code/Baudot code keyboard using a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Avalanche Transistor
An avalanche transistor is a bipolar junction transistor designed for operation in the region of its collector-current/collector-to-emitter voltage characteristics beyond the collector-to-emitter breakdown voltage, called ''avalanche breakdown region''. This region is characterized by avalanche breakdown, which is a phenomenon similar to Townsend discharge for gases, and negative differential resistance. Operation in the avalanche breakdown region is called avalanche-mode operation: it gives avalanche transistors the ability to switch very high currents with less than a nanosecond rise time, rise and fall times (transition times). Transistors not specifically designed for the purpose can have reasonably consistent avalanche properties; for example 82% of samples of the 15V high-speed switch 2N2369, manufactured over a 12-year period, were capable of generating avalanche breakdown pulses with rise time of 350 ps or less, using a 90V power supply as Jim Williams (analog designer), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Foldback (power Supply Design)
Current limiting is the practice of imposing a limit on the current that may be delivered to a load to protect the circuit generating or transmitting the current from harmful effects due to a short-circuit or overload. The term "current limiting" is also used to define a type of overcurrent protective device. According to the 2020 NEC/NFPA 70, a current-limiting overcurrent protective device is defined as, "A device that, when interrupting currents in its current-limiting range, reduces the current flowing in the faulted circuit to a magnitude substantially less than that obtainable in the same circuit if the device were replaced with a solid conductor having compatible impedance." Inrush current limiting An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Supply
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, electric current, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Amplifier
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude (magnitude of the voltage or current) of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one. An amplifier can be either a separate piece of equipment or an electrical circuit contained within another device. Amplification is fundamental to modern electronics, and amplifiers are widely used in almost all electronic equipment. Amplifiers can be categorized in different ways. One is by the frequency of the electronic signal being amplified. For ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Junction Temperature
Junction temperature, short for transistor junction temperature, is the temperature of the actual semiconductor in an electronic device. In operation, it is higher than case temperature and the temperature of the part's exterior. The difference is equal to the amount of heat transferred from the junction to case multiplied by the junction-to-case thermal resistance. Microscopic effects Various physical properties of semiconductor materials are temperature dependent. These include the diffusion rate of dopant elements, carrier mobilities and the thermal production of charge carriers. At the low end, sensor diode noise can be reduced by cryogenic cooling. On the high end, the resulting increase in local power dissipation can lead to thermal runaway that may cause transient or permanent device failure. Maximum junction temperature calculation Maximum junction temperature (sometimes abbreviated TJMax) is specified in a part's datasheet and is used when calculating the necessary case- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MOSFET
upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, MOS FET, or MOS transistor) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The term ''metal–insulator–semiconductor field-effect transistor'' (''MISFET'') is almost synonymous with ''MOSFET''. Another near-synonym is ''insulated-gate field-effect transistor'' (''IGFET''). The main advantage of a MOSFET is that it requires almost no input current to control the load current under steady-state or low-frequency conditions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinate
In mathematics, the abscissa (; plural ''abscissae'' or ''abscissas'') and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system: : abscissa \equiv x-axis (horizontal) coordinate : ordinate \equiv y-axis (vertical) coordinate Together they form an ordered pair which defines the location of a point in two-dimensional rectangular space. More technically, the abscissa of a point is the signed measure of its projection on the primary axis. Its absolute value is the distance between the projection and the origin of the axis, and its sign is given by the location on the projection relative to the origin (before: negative; after: positive). Similarly, the ordinate of a point is the signed measure of its projection on the secondary axis. In three dimensions, the third direction is sometimes referred to as the '' applicate''. Etymology Though the word "abscissa" () has been used at least since ''De Practica Geometrie'' (1220) by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |