Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real, complex, or generally vectorvalued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any nonzero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^25x+6 has the two roots (or zeros) that are 2 and 3. f(2)=2^25\times 2+6= 0\textf(3)=3^25\times 3+6=0. If the function maps real numbers to real numbers, th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Multiplicity (mathematics)
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, ''double roots'' counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of ''distinct'' elements, as in "the number of distinct roots". However, whenever a set (as opposed to multiset) is formed, multiplicity is automatically ignored, without requiring use of the term "distinct". Multiplicity of a prime factor In prime factorization, the multiplicity of a prime factor is its padic valuation. For example, the prime factorization of the integer is : the multiplicity of the prime factor is , while the multiplicity of each of the prime factors and is . ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Inverse Image
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their nonabelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Realvalued Function
In mathematics, a realvalued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Realvalued functions of a real variable (commonly called ''real functions'') and realvalued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of realvalued functions. Algebraic structure Let (X,) be the set of all functions from a set to real numbers \mathbb R. Because \mathbb R is a field, (X,) may be turned into a vector space and a commutative algebra over the reals with the following operations: *f+g: x \mapsto f(x) + g(x) – vector addition *\mathbf: x \mapsto 0 – additive identity *c f: x \mapsto c f(x),\quad c \in \mathbb R – scalar multiplication *f g: x \mapsto f(x)g(x) – pointwise multiplication These operations extend to partial functions from to \mathbb R, with the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians AlBiruni and Sharaf alDin alTusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraic Solution
A solution in radicals or algebraic solution is a closedform expression, and more specifically a closedform algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of th roots (square roots, cube roots, and other integer roots). A wellknown example is the solution :x=\frac of the quadratic equation :ax^2 + bx + c =0. There exist more complicated algebraic solutions for cubic equations and quartic equations. The Abel–Ruffini theorem,Jacobson, Nathan (2009), Basic Algebra 1 (2nd ed.), Dover, and, more generally Galois theory, state that some quintic equations, such as :x^5x+1=0, do not have any algebraic solution. The same is true for every higher degree. However, for any degree there are some polynomial equations that have algebraic solutions; for example, the equation x^ = 2 can be solved as x=\pm\sqrt 0. The eight other solutions are nonr ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Algebraic Function
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are: * f(x) = 1/x * f(x) = \sqrt * f(x) = \frac Some algebraic functions, however, cannot be expressed by such finite expressions (this is the Abel–Ruffini theorem). This is the case, for example, for the Bring radical, which is the function implicitly defined by : f(x)^5+f(x)+x = 0. In more precise terms, an algebraic function of degree in one variable is a function y = f(x), that is continuous in its domain and satisfies a polynomial equation : a_n(x)y^n+a_(x)y^+\cdots+a_0(x)=0 where the coefficients are polynomial functions of , with integer coefficients. It can be shown that the same class of functions is obtained if alg ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with nonzero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a nonnegative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x  9, which can also be written as 7x^2y^3 + 4x^1y^0  9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2  (x1)^2, one ca ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Newton's Method
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a rootfinding algorithm which produces successively better approximations to the roots (or zeroes) of a realvalued function. The most basic version starts with a singlevariable function defined for a real variable , the function's derivative , and an initial guess for a root of . If the function satisfies sufficient assumptions and the initial guess is close, then :x_ = x_0  \frac is a better approximation of the root than . Geometrically, is the intersection of the axis and the tangent of the graph of at : that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as :x_ = x_n  \frac until a sufficiently precise value is reached. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex fun ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Approximation
An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ''ad'' (''ad'' before ''p'' becomes ap by assimilation) meaning ''to''. Words like ''approximate'', ''approximately'' and ''approximation'' are used especially in technical or scientific contexts. In everyday English, words such as ''roughly'' or ''around'' are used with a similar meaning. It is often found abbreviated as ''approx.'' The term can be applied to various properties (e.g., value, quantity, image, description) that are nearly, but not exactly correct; similar, but not exactly the same (e.g., the approximate time was 10 o'clock). Although approximation is most often applied to numbers, it is also frequently applied to such things as mathematical functions, shapes, and physical laws. In science, approximation can refer to u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Vieta's Formulas
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Basic formulas Any general polynomial of degree ''n'' :P(x) = a_nx^n + a_x^ + \cdots + a_1 x + a_0 (with the coefficients being real or complex numbers and ) has (not necessarily distinct) complex roots by the fundamental theorem of algebra. Vieta's formulas relate the polynomial's coefficients to signed sums of products of the roots as follows: :\begin r_1 + r_2 + \dots + r_ + r_n = \dfrac \\ (r_1 r_2 + r_1 r_3+\cdots + r_1 r_n) + (r_2r_3 + r_2r_4+\cdots + r_2r_n)+\cdots + r_r_n = \dfrac \\ \quad \vdots \\ r_1 r_2 \dots r_n = (1)^n \dfrac. \end Vieta's formulas can equivalently be written as : \sum_ \left(\prod_^k r_\right)=(1)^k\frac for (the indices are sorted in increasing order to ensure each product of roots is used exactly once ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 