HOME
*



picture info

Relative Homology
In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Definition Given a subspace A\subseteq X, one may form the short exact sequence :0\to C_\bullet(A) \to C_\bullet(X)\to C_\bullet(X) /C_\bullet(A) \to 0 , where C_\bullet(X) denotes the singular chains on the space ''X''. The boundary map on C_\bullet(X) descends to C_\bullet(A) and therefore induces a boundary map \partial'_\bullet on the quotient. If we denote this quotient by C_n(X,A):=C_n(X)/C_n(A), we then have a complex :\cdots\longrightarrow C_n(X,A) \xrightarrow C_(X,A) \longrightarrow \cdots . By definition, the th relative homology group of the pair of spaces (X,A) is :H_n(X,A) := \ker\partial'_n/\operatorname\partial'_. One say ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. Homology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Retract
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the secon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joseph J
Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the modern-day Nordic countries. In Portuguese and Spanish, the name is "José". In Arabic, including in the Quran, the name is spelled '' Yūsuf''. In Persian, the name is "Yousef". The name has enjoyed significant popularity in its many forms in numerous countries, and ''Joseph'' was one of the two names, along with ''Robert'', to have remained in the top 10 boys' names list in the US from 1925 to 1972. It is especially common in contemporary Israel, as either "Yossi" or "Yossef", and in Italy, where the name "Giuseppe" was the most common male name in the 20th century. In the first century CE, Joseph was the second most popular male name for Palestine Jews. In the Book of Genesis Joseph is Jacob's eleventh son and Rachel's first son, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mayer–Vietoris Sequence
In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces. The Mayer–Vietoris sequence holds for a variety of cohomology and homology theories, including simplicial homology and singular cohomology. In general, the sequence holds for those theories satisfying the Eilenberg–S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excision Theorem
In algebraic topology, a branch of mathematics, the excision theorem is a theorem about relative homology and one of the Eilenberg–Steenrod axioms. Given a topological space X and subspaces A and U such that U is also a subspace of A, the theorem says that under certain circumstances, we can cut out (excise) U from both spaces such that the relative homologies of the pairs (X \setminus U,A \setminus U ) into (X, A) are isomorphic. This assists in computation of singular homology groups, as sometimes after excising an appropriately chosen subspace we obtain something easier to compute. Theorem Statement If U\subseteq A \subseteq X are as above, we say that U can be excised if the inclusion map of the pair (X \setminus U,A \setminus U ) into (X, A) induces an isomorphism on the relative homologies: The theorem states that if the closure of U is contained in the interior of A, then U can be excised. Often, subspaces that do not satisfy this containment criterion still ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Functoriality Of Relative Homology
''The'' () is a grammatical article in English, denoting persons or things already mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with pronouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of pronoun ''thee'') when followed by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written G\,/\,N, where G is the original group and N is the normal subgroup. (This is pronounced G\bmod N, where \mbox is short for modulo.) Much of the importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Cohomology
In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain. The rational function 1/x, for example, is defined only on the complement of 0 on the affine line \mathbb^1_K over a field K, and cannot be extended to a function on the entire space. The local cohomology module H^1_(K (where K /math> is the coordinate ring of \mathbb^1_K) detects this in the nonvanishing of a cohomology class /x/math>. In a similar manner, 1/xy is defined away from the x and y axes in the affine plane, but cannot be extended to either the complement of the x-axis or the complement of the y-axis alone (nor can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cone (algebraic Geometry)
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme ''X'', the relative Spec :C = \operatorname_X R of a quasi-coherent graded ''O''''X''-algebra ''R'' is called the cone or affine cone of ''R''. Similarly, the relative Proj :\mathbb(C) = \operatorname_X R is called the projective cone of ''C'' or ''R''. Note: The cone comes with the \mathbb_m-action due to the grading of ''R''; this action is a part of the data of a cone (whence the terminology). Examples *If ''X'' = Spec ''k'' is a point and ''R'' is a homogeneous coordinate ring, then the affine cone of ''R'' is the (usual) affine cone over the projective variety corresponding to ''R''. *If R = \bigoplus_0^\infty I^n/I^ for some ideal sheaf ''I'', then \operatorname_X R is the normal cone to the closed scheme determined by ''I''. *If R = \bigoplus_0^\infty L^ for some line bundle ''L'', then \operatorname_X R is the total space of the dual of ''L''. *More generally, given a v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]