Run Of A Sequence
In computer science, a run of a sequence is a non-decreasing range of the sequence that cannot be extended. The ''number of runs'' of a sequence is the number of increasing subsequences of the sequence. This is a measure of presortedness, and in particular measures how many subsequences must be merged to sort a sequence. Definition Let X=\langle x_1,\dots,x_n\rangle be a sequence of elements from a totally ordered set. A run of X is a maximal increasing sequence \langle x_i,x_,\dots, x_,x_j \rangle. That is, x_>x_i and x_>x_ assuming that x_ and x_ exists. For example, if n is a natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ..., the sequence \langle n+1,n+2,\dots, 2n, 1,2,\dots, n\rangle has the two runs \langle n+1,\dots, 2n \rangle and \langle 1,\dots,n \rangle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Measure Of Presortedness
Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England measure, legislation of the Church of England * Measure of the National Assembly for Wales, primary legislation in Wales between 1999 and 2011 * Assembly Measure of the Northern Ireland Assembly (1973) Science and mathematics * Measure (data warehouse), a property on which calculations can be made * Measure (mathematics), a systematic way to assign a number to each suitable subset of a given set * Measure (physics), a way to integrate over all possible histories of a system in quantum field theory * Measure (termination), in computer program termination analysis * Measuring coalgebra, a coalgebra constructed from two algebras * Measure (Apple), an iOS augmented reality app Other uses * ''Measure'' (album), by Matt Pond PA, 2000, and its title track * Measure (bartending) or jigge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Totally Ordered Set
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a ( strongly connected, formerly called totality). Requirements 1. to 3. just make up the definition of a partial order. Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, toset and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but generally refers to a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Increasing Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infini ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Natural Merge Sort
In computer science, merge sort (also commonly spelled as mergesort and as ) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations of merge sort are stable, which means that the relative order of equal elements is the same between the input and output. Merge sort is a divide-and-conquer algorithm that was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up merge sort appeared in a report by Goldstine and von Neumann as early as 1948. Algorithm Conceptually, a merge sort works as follows: #Divide the unsorted list into ''n'' sub-lists, each containing one element (a list of one element is considered sorted). #Repeatedly merge sublists to produce new sorted sublists until there is only one sublist remaining. This will be the sorted list. Top-down implementation Example C-like code using indices for top-down merge sort algorithm that recursively splits the list (called ''runs'' in this example) into sub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |