Rectangular Prism
A rectangular cuboid is a special case of a cuboid with rectangular faces in which all of its dihedral angles are right angles. This shape is also called rectangular parallelepiped or orthogonal parallelepiped. Many writers just call these "cuboids", without qualifying them as being rectangular, but others use cuboid to refer to a more general class of polyhedra with six quadrilateral faces. Properties A rectangular cuboid is a convex polyhedron with six rectangle faces. The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are congruent. Because of the faces' orthogonality, the rectangular cuboid is classified as convex orthogonal polyhedron. By definition, this makes it a ''right rectangular prism''. Rectangular cuboids may be referred to colloquially as "boxes" (after the physical object). If two opposite faces become squares, the resulting one may obtain another special case of rectangular prism, known as square rectangular cuboid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prism (geometry)
In geometry, a prism is a polyhedron comprising an polygon Base (geometry), base, a second base which is a Translation (geometry), translated copy (rigidly moved without rotation) of the first, and other Face (geometry), faces, necessarily all parallelograms, joining corresponding sides of the two bases. All Cross section (geometry), cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids. Like many basic geometric terms, the word ''prism'' () was first used in Euclid's Elements, Euclid's ''Elements''. Euclid defined the term in Book XI as "a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms". However, this definition has been criticized for not being specific enough in regard to the nature of the bases (a cause of some confusion amongst generations of later geometry writers). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prism Graph
In the mathematics, mathematical field of graph theory, a prism graph is a Graph (discrete mathematics), graph that has one of the prism (geometry), prisms as its skeleton. Examples The individual graphs may be named after the associated solid: * Triangular prism graph – 6 vertices, 9 edges * Cubical graph – 8 vertices, 12 edges * Pentagonal prism graph – 10 vertices, 15 edges * Hexagonal prism graph – 12 vertices, 18 edges * Heptagonal prism graph – 14 vertices, 21 edges * Octagonal prism graph – 16 vertices, 24 edges * ... Although geometrically the star polygons also form the faces of a different sequence of (self-intersecting and non-convex) prismatic polyhedra, the graphs of these star prisms are isomorphic to the prism graphs, and do not form a separate sequence of graphs. Construction Prism graphs are examples of generalized Petersen graphs, with parameters GP(''n'',1). They may also be constructed as the Cartesian product of graphs, Cartesian product of a c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Spider And The Fly Problem
upright=1.3, Isometric projection and net of naive (1) and optimal (2) solutions of the spider and the fly problem The spider and the fly problem is a recreational mathematics problem with an unintuitive solution, asking for a shortest path or geodesic between two points on the surface of a cuboid. It was originally posed by Henry Dudeney. Problem In the typical version of the puzzle, an otherwise empty cuboid room 30 feet long, 12 feet wide and 12 feet high contains a spider and a fly. The spider is 1 foot below the ceiling and horizontally centred on one 12′×12′ wall. The fly is 1 foot above the floor and horizontally centred on the opposite wall. The problem is to find the minimum distance the spider must crawl along the walls, ceiling and/or floor to reach the fly, which remains stationary. Solutions A naive solution is for the spider to remain horizontally centred, and crawl up to the ceiling, across it and down to the fly, giving a distance of 42 feet. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Padovan Cuboid Spiral
In mathematics the Padovan cuboid spiral is the spiral created by joining the diagonals of faces of successive cuboid In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six Face (geometry), faces; it has eight Vertex (geometry), vertices and twelve Edge (geometry), edges. A ''rectangular cuboid'' (sometimes also calle ...s added to a unit cube. The cuboids are added sequentially so that the resulting cuboid has dimensions that are successive Padovan numbers... See in particular pp. 96–97.. The first cuboid is 1x1x1. The second is formed by adding to this a 1x1x1 cuboid to form a 1x1x2 cuboid. To this is added a 1x1x2 cuboid to form a 1x2x2 cuboid. This pattern continues, forming in succession a 2x2x3 cuboid, a 2x3x4 cuboid etc. Joining the diagonals of the exposed end of each new added cuboid creates a spiral (seen as the black line in the figure). The points on this spiral all lie in the same plane. The cuboids are added in a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimum Bounding Box
In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. In the two-dimensional case it is called the ''minimum bounding rectangle''. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are parallel to the (Cartesian) coordinate axes. It is the Cartesian product of ''N'' intervals each of which is defined by the minimal and maximal value o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperrectangle
In geometry, a hyperrectangle (also called a box, hyperbox, k-cell or orthotopeCoxeter, 1973), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is Congruence (geometry), congruent to the Cartesian product of finite interval (mathematics), intervals. This means that a k-dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every k-cell is compact (mathematics), compact. If all of the edges are equal length, it is a ''hypercube''. A hyperrectangle is a special case of a parallelohedron#Related shapes, parallelotope. Formal definition For every integer i from 1 to k, let a_i and b_i be real numbers such that a_i < b_i. The set of all points in whose coordinates satisfy the inequalities is a -cell. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Net (polyhedron)
In geometry, a net of a polyhedron is an arrangement of non-overlapping Edge (geometry), edge-joined polygons in the plane (geometry), plane which can be folded (along edges) to become the face (geometry), faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard. An early instance of polyhedral nets appears in the works of Albrecht Dürer, whose 1525 book ''A Course in the Art of Measurement with Compass and Ruler'' (''Unterweysung der Messung mit dem Zyrkel und Rychtscheyd '') included nets for the Platonic solids and several of the Archimedean solids. These constructions were first called nets in 1543 by Augustin Hirschvogel. Existence and uniqueness Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated. The edges that are cut from a convex poly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Brick
In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime. A perfect Euler brick is one whose space diagonal is also an integer, but such a brick has not yet been found. Definition The definition of an Euler brick in geometric terms is equivalent to a solution to the following system of Diophantine equations: :\begin a^2 + b^2 = d^2\\ a^2 + c^2 = e^2\\ b^2 + c^2 = f^2\end where are the edges and are the diagonals. Properties * If is a solution, then is also a solution for any . Consequently, the solutions in rational numbers are all rescalings of integer solutions. Given an Euler brick with edge-lengths , the triple constitutes an Euler brick as well.Wacław Sierpiński, '' Pythagorean Triangles'', Dover Publications, 2003 (orig. ed. 1962). * Exactly one edge and two face diagonals of a ''primitive'' Eul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sugar Cube
Sugar cubes are white sugar granules pressed into small cubes measuring approximately 1 teaspoon each. They are usually used for sweetening drinks such as tea and coffee. They were invented in the early 19th century in response to the difficulties of breaking hard "sugarloafs" into small uniform size pieces. They are often found in cafes and restaurants, although their popularity as a DIY sweetener has waned with the rise of barista cafes. Nevertheless they still have many uses such as arts and crafts, as metaphor for the amount of sugar in a product, and at formal events. Size and packaging The typical size for each cube is between and , corresponding to the weight of approximately 3–5 grams, or approximately 1 teaspoon. However, the cube sizes and shapes vary greatly, for example, playing card suits-shaped pieces are produced under the name "bridge cube sugar". The typical retail packaging weight is 0.5 kilogram (1 pound (unit of weight), pound) or 1 kilogram / 2 pound ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Honeycomb (geometry)
In geometry, a honeycomb is a ''space filling'' or ''close packing'' of polyhedron, polyhedral or higher-dimensional ''cells'', so that there are no gaps. It is an example of the more general mathematical ''tiling'' or ''tessellation'' in any number of dimensions. Its dimension can be clarified as ''n''-honeycomb for a honeycomb of ''n''-dimensional space. Honeycombs are usually constructed in ordinary Euclidean geometry, Euclidean ("flat") space. They may also be constructed in non-Euclidean geometry, non-Euclidean spaces, such as #Hyperbolic honeycombs, hyperbolic honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. Classification There are infinitely many honeycombs, which have only been partially classified. The more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered. The simplest honeycombs to build are formed from stacked layers or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pythagorean Theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides , and the hypotenuse , sometimes called the Pythagorean equation: :a^2 + b^2 = c^2 . The theorem is named for the Ancient Greece, Greek philosopher Pythagoras, born around 570 BC. The theorem has been Mathematical proof, proved numerous times by many different methods – possibly the most for any mathematical theorem. The proofs are diverse, including both Geometry, geometric proofs and Algebra, algebraic proofs, with some dating back thousands of years. When Euclidean space is represented by a Cartesian coordinate system in analytic geometry, Euclidean distance satisfies th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |