HOME





Quasibarrelled
In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds. Definition A subset B of a topological vector space (TVS) X is called bornivorous if it absorbs all bounded subsets of X; that is, if for each bounded subset S of X, there exists some scalar r such that S \subseteq r B. A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Properties A locally convex Hausdorff quasibarrelled space that is sequentially complete is barrelled. A locally convex Hausdorff quasibarrelled space is a Mackey space, qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distinguished Space
In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Definition Suppose that X is a locally convex space and let X^ and X^_b denote the strong dual of X (that is, the continuous dual space of X endowed with the strong dual topology). Let X^ denote the continuous dual space of X^_b and let X^_b denote the strong dual of X^_b. Let X^_ denote X^ endowed with the weak-* topology induced by X^, where this topology is denoted by \sigma\left(X^, X^\right) (that is, the topology of pointwise convergence on X^). We say that a subset W of X^ is \sigma\left(X^, X^\right)-bounded if it is a bounded subset of X^_ and we call the closure of W in the TVS X^_ the \sigma\left(X^, X^\right)-closure of W. If B is a subset of X then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barrelled Space
In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by . Barrels A convex and balanced subset of a real or complex vector space is called a and it is said to be , , or . A or a in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset. Every barrel must contain the origin. If \dim X \geq 2 and if S is any subset of X, then S is a convex, balanced, and absorbing set of X if and only if this is all true of S \cap Y in Y for every 2-dimensional vector subspace Y; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distinguished Space
In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Definition Suppose that X is a locally convex space and let X^ and X^_b denote the strong dual of X (that is, the continuous dual space of X endowed with the strong dual topology). Let X^ denote the continuous dual space of X^_b and let X^_b denote the strong dual of X^_b. Let X^_ denote X^ endowed with the weak-* topology induced by X^, where this topology is denoted by \sigma\left(X^, X^\right) (that is, the topology of pointwise convergence on X^). We say that a subset W of X^ is \sigma\left(X^, X^\right)-bounded if it is a bounded subset of X^_ and we call the closure of W in the TVS X^_ the \sigma\left(X^, X^\right)-closure of W. If B is a subset of X then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




σ-barrelled Space
In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces. Definition A TVS ''X'' with continuous dual space X^ is said to be countably barrelled if B^ \subseteq X^ is a weak-* bounded subset of X^ that is equal to a countable union of equicontinuous subsets of X^, then B^ is itself equicontinuous. A Hausdorff locally convex TVS is countably barrelled if and only if each barrel in ''X'' that is equal to the countable intersection of closed convex balanced neighborhoods of 0 is itself a neighborhood of 0. σ-barrelled space A TVS with continuous dual space X^ is said to be σ-barrelled if every weak-* bounded (countable) sequence in X^ is equicontinuous. Sequentially barrelled space A TVS with continuous dual space X^ is said to be sequentially barrelled if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable TVS
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS. Pseudometrics and metrics A pseudometric on a set X is a map d : X \times X \rarr \R satisfying the following properties: d(x, x) = 0 \text x \in X; Symmetry: d(x, y) = d(y, x) \text x, y \in X; Subadditivity: d(x, z) \leq d(x, y) + d(y, z) \text x, y, z \in X. A pseudometric is called a metric if it satisfies: Identity of indiscernibles: for all x, y \in X, if d(x, y) = 0 then x = y. Ultrapseudometric A pseudometric d on X is called a ultrapseudometric or a strong pseudometric if it satisfies: Strong/Ultrametric triangle inequality: d(x, z) \leq \max \ \text x, y, z \in X. Pseudometric space A pseudometric space is a pair (X, d) consisting of a set X and a pseudometric d on X such that X's t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semireflexive Space
In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) ''X'' such that the canonical evaluation map from ''X'' into its bidual (which is the strong dual of the strong dual of ''X'') is bijective. If this map is also an isomorphism of TVSs then it is called reflexive. Semi-reflexive spaces play an important role in the general theory of locally convex TVSs. Since a normable TVS is semi-reflexive if and only if it is reflexive, the concept of semi-reflexivity is primarily used with TVSs that are not normable. Definition and notation Brief definition Suppose that is a topological vector space (TVS) over the field \mathbb (which is either the real or complex numbers) whose continuous dual space, X^, separates points on (i.e. for any x \in X there exists some x^ \in X^ such that x^(x) \neq 0). Let X^_b and X^_ both denote the strong dual of , which is the vector space X^ of continuous linear fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily the canonical evaluation map). Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Dual Space
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DF-space
In the field of functional analysis, DF-spaces, also written (''DF'')-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products. DF-spaces were first defined by Alexander Grothendieck and studied in detail by him in . Grothendieck was led to introduce these spaces by the following property of strong duals of metrizable spaces: If X is a metrizable locally convex space and V_1, V_2, \ldots is a sequence of convex 0-neighborhoods in X^_b such that V := \cap_ V_i absorbs every strongly bounded set, then V is a 0-neighborhood in X^_b (where X^_b is the continuous dual space of X endowed with the strong dual topology). Definition A locally convex topological vector space (TVS) X is a DF-space, also written (''DF'')-space, if # X is a countably quasi-barrelled space (i.e. every strongly bounded countable union of equicontinu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bornological Space
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for "bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite union ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]