Quarter-pinched Sphere Theorem
   HOME





Quarter-pinched Sphere Theorem
In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, ''n''-dimensional Riemannian manifold with sectional curvature taking values in the interval (1,4] then M is homeomorphic to the ''n''-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in (1,4].) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature. Note that the conclusion is false if the sectional curvatures are allowed to take values in the ''closed'' interval ,4/math>. The standard counterexample is complex projective space with the Fubini–Study metric; sectional curvatures of this metric take on values between 1 and 4, with endpoints in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smoothly from point to point). This gives, in particular, local notions of angle, arc length, length of curves, surface area and volume. From those, some other global quantities can be derived by integral, integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "" ("On the Hypotheses on which Geometry is Based"). It is a very broad and abstract generalization of the differential geometry of surfaces in Three-dimensional space, R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Schoen
Richard Melvin Schoen (born October 23, 1950) is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984 and his works on harmonic maps. Early life and education Schoen was born in Celina, Ohio, on October 23, 1950. In 1968, he graduated from Fort Recovery High School. He received his B.S. from the University of Dayton in mathematics. He then received his PhD in 1977 from Stanford University with Leon Simon and Shing-Tung Yau as advisors. Career After faculty positions at the Courant Institute, NYU, University of California, Berkeley, and University of California, San Diego, he was Professor at Stanford University from 1987 to 2014, as Bass Professor of Humanities and Sciences since 1992. He is currently Distinguished Professor and Excellence in Teaching Chair at the University of California, Irvine. His surname is pronounced "Shane." Schoen received an NSF Graduate Resear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * Mathematical Reviews * Zentralblatt MATH * Science Citation Index * ISI Alerting Services * CompuMath Citation Index *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commentarii Mathematici Helvetici
The ''Commentarii Mathematici Helvetici'' is a quarterly peer-reviewed scientific journal in mathematics. The Swiss Mathematical Society (SMG) started the journal in 1929 after a meeting in May of the previous year. The Swiss Mathematical Society still owns and operates the journal; the publishing is currently handled on its behalf by the European Mathematical Society. The scope of the journal includes research articles in all aspects in mathematics. The editors-in-chief have been Rudolf Fueter (1929–1949), J.J. Burckhardt (1950–1981), P. Gabriel (1982–1989), H. Kraft (1990–2005), and Eva Bayer-Fluckiger (2006–present). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2019 impact factor of 0.854. History The idea for a society-owned research journal emerged in June 1926, when the SMG petitioned the Swiss Confederation for a CHF 3,500 subsidy "to establish its own scientific jour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilhelm Klingenberg
Wilhelm Paul Albert Klingenberg (28 January 1924 – 14 October 2010) was a German mathematician who worked on differential geometry and in particular on closed geodesics. Life Klingenberg was born in 1924 as the son of a Protestant minister. In 1934 the family moved to Berlin; he joined the Wehrmacht in 1941. After the war, he studied mathematics at the University of Kiel, where he finished his Ph.D. in 1950 with Karl-Heinrich Weise, with a thesis in affine differential geometry. After some time as an assistant of Friedrich Bachmann, he worked in the group of Wilhelm Blaschke at the University of Hamburg, where he defended his Habilitation in 1954. He then visited Sapienza University of Rome, working in the group of Francesco Severi and Beniamino Segre, after which he obtained a faculty position at the University of Göttingen (with Kurt Reidemeister), where he stayed until 1963. In 1954–55 Klingenberg spent a year at Indiana University Bloomington; during this time he a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Marcel Berger
Marcel Berger (14 April 1927 – 15 October 2016) was a French mathematician, doyen of French differential geometry, and a former director of the Institut des Hautes Études Scientifiques (IHÉS), France. Biography After studying from 1948 to 1951 at the École normale supérieure in Paris, Berger obtained in 1954 his PhD from the University of Paris, with thesis written under the direction of André Lichnerowicz. From 1958 to 1964 he taught at the University of Strasbourg and had visiting positions at the Massachusetts Institute of Technology and the University of California, Berkeley. From 1964 to 1966 he taught at the University of Nice, after which he joined the University of Paris VII. From 1985 to 1993 he served as director of the IHÉS. Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS. Awards and honors *1956 Prix Peccot, Collège de France *1962 Prix Maurice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harry Rauch
Harry Ernest Rauch (November 9, 1925 – June 18, 1979) was an American mathematician, who worked on complex analysis and differential geometry. He was born in Trenton, New Jersey, and died in White Plains, New York. Rauch earned his PhD in 1948 from Princeton University under Salomon Bochner with thesis ''Generalizations of Some Classic Theorems to the Case of Functions of Several Variables''. From 1949 to 1951 he was a visiting member of the Institute for Advanced Study. He was in the 1960s a professor at Yeshiva University and from the mid-1970s a professor at the Graduate School of the City University of New York. His research was on differential geometry (especially geodesics on ''n''-dimensional manifolds), Riemann surfaces, and theta functions. In the early 1950s Rauch made fundamental progress on the ''quarter-pinched sphere conjecture'' in differential geometry. In the case of positive sectional curvature and simply connected differential manifolds, Rauch proved tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


German Mathematical Society
The German Mathematical Society (, DMV) is the main professional society of German mathematicians and represents German mathematics within the European Mathematical Society (EMS) and the International Mathematical Union (IMU). It was founded in 1890 in Bremen with the set theorist Georg Cantor as first president. Founding members included Georg Cantor, Felix Klein, Walther von Dyck, David Hilbert, Hermann Minkowski, Carl Runge, Rudolf Sturm, Hermann Schubert, and Heinrich Weber. The current president of the DMV is . Activities In honour of its founding president, Georg Cantor, the society awards the Cantor Medal. The DMV publishes two scientific journals, the ''Jahresbericht der DMV'' and ''Documenta Mathematica''. It also publishes a quarterly magazine for its membership the ''Mitteilungen der DMV''. The annual meeting of the DMV is called the ''Jahrestagung''; the DMV traditionally meets every four years together with the Austrian Mathematical Society (ÖMG) an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinz Hopf
Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of dynamical systems, topology and geometry. Early life and education Hopf was born in Gräbschen, German Empire (now , part of Wrocław, Poland), the son of Elizabeth (née Kirchner) and Wilhelm Hopf. His father was born Jewish and converted to Protestantism a year after Heinz was born; his mother was from a Protestant family. Hopf attended Karl Mittelhaus higher boys' school from 1901 to 1904, and then entered the König-Wilhelm- Gymnasium in Breslau. He showed mathematical talent from an early age. In 1913 he entered the Silesian Friedrich Wilhelm University where he attended lectures by Ernst Steinitz, Adolf Kneser, Max Dehn, Erhard Schmidt, and Rudolf Sturm. When World War I broke out in 1914, Hopf eagerly enlisted. He was wounded twice and received the iron cross (first class) in 1918. After the war Hopf continued his mathematical education in Heidelberg (winter 1919/2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ricci Flow
In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation. The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen. Following the possibility that the singularities of solutions of the Ricci flow could identify the topological data predicted by William ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]